Genotypic Prediction of HIV-1 CRF02-AG Tropism

Stéphanie Raymond1,2,3, Pierre Delobel1,4, Maud Mavigner1, Michelle Cazabat1,3, Corinne Souyris1,3, Stéphanie Encinas1,3, Karine Sandres-Sauné1,2,3, Christophe Pasquier1,2,3, Bruno Marchou2,4, Patrice Massip2,4 and Jacques Izopet1,2,3

INSERM, U563, Toulouse, F-31300 France1; Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, F-31300 France2; CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300 France3; CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, F-31300 France4.

Corresponding author: J. Izopet, CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300 France.

Phone: +33 5 67 69 04 24. Fax: +33 5 67 69 04 25

E-mail: izopet.j@chu-toulouse.fr

Abstract word count: 50

Total text word count: 1062

Financial support: INSERM U563
ABSTRACT

We assessed the performance of genotypic algorithms for predicting the tropism of HIV-1 coreceptor usage in 52 patients infected with the CRF02-AG subtype. The combined criteria of the 11/25 and net charge rules accurately detected CXCR4-using CRF02-AG viruses, whereas the Geno2pheno tool lacked sensitivity, and the WebPSSM tool lacked specificity.
Human immunodeficiency virus type 1 (HIV-1) enters target cells through the sequential binding of the envelope glycoprotein (gp120) to CD4 and a chemokine receptor, CCR5 or CXCR4 (1). HIV-1 coreceptor usage must be identified before treatment with CCR5 antagonists, as they can only be used for patients harbouring R5 viruses alone (7). The gold standard for characterizing HIV-1 tropism is a recombinant virus phenotypic entry assay, but genotypic methods based on the V3 sequence could be easier. We have previously shown that the V3 genotype accurately predicts the phenotype of HIV-1 coreceptor usage for subtype B viruses (5, 13). But the V3-based genotypic algorithms could be unsuitable for predicting the tropism of non-B viruses because they were built using data sets of genotype-phenotype correlations from subtype B viruses (9). Indeed, the Geno2Pheno and the WebPSSM algorithms were not designed to be predictive for non-B viruses, except a recent version of the PSSM designed for subtype C viruses (11, 12). It is thus necessary to study subtype-specific genotypic determinants of HIV-1 tropism. The CRF02-AG recombinant subtype predominates in West Africa (10) and accounts for an increasing proportion of cases in Western Europe, notably in France (6, 14). Various proportions of CXCR4-using viruses have been reported in subtype CRF02-AG-infected patients (2, 15, 16), but little is known about the genotypic determinants of HIV-1 tropism for subtype CRF02-AG viruses. Genotype-phenotype correlation studies are thus needed before genotypic algorithms can be used to predict the tropism of this particular HIV-1 subtype.

We characterized both genotypically and phenotypically the tropism of 52 HIV-1 CRF02-AG-infected individuals, recruited at the Department of Infectious Diseases of Toulouse University Hospital, France. These patients had a median plasma HIV-1 RNA load of 4.95 log copies/ml (IQR, [4.18-5.34]), and a median CD4+ T lymphocyte count of 210 cells/mm³ (IQR, [115-391]). All viruses were identified as the HIV-1 CRF02-AG subtype by
pol and env sequence analysis using the HIVseq program (http://hivdb.stanford.edu/), and the NCBI genotyping tool (http://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi). We confirmed that these viruses belonged to the CRF02-AG subtype by neighbor-joining phylogenetic analysis of the sequences studied here, together with HIV-1 subtype reference sequences from the Los Alamos National Laboratory (http://www.lanl.gov/content/sequence/NEWALIGN/align.html).

A region spanning the gp120 and the ectodomain of the gp41 env gene of plasma HIV-1 RNA was amplified by RT-PCR. Two separate PCR amplifications were performed in parallel for each patient and pooled to prevent sampling bias of the assessed virus population. The V3 region from the env PCR product was bulk sequenced, blinded to the phenotype, as previously described (13). Bulk sequencing allows the detection of minor variants when present at a frequency of at least 20% in the viral population. The phenotype of HIV-1 coreceptor usage was determined using a recombinant virus entry assay (13). The sensitivity of the assay has been enhanced to detect minor amounts of CXCR4-using virus when they accounted for 0.5-1% of the virus population (data not shown).

We used a genotypic rule based on amino-acid residues at positions 11 and 25 and the overall net charge of V3 to predict HIV-1 tropism from the V3 genotype (3, 4, 8). One of the following criteria is required for predicting CXCR4 coreceptor usage: (i) R or K at position 11 of V3 and/or K at position 25; (ii) R at position 25 of V3 and a net charge of ≥+5; (iii) a net charge of ≥+6 (13). The V3 net charge was calculated by subtracting the number of negatively charged amino acids [D and E] from the number of positively charged ones [K and R]. We have previously shown that these combined criteria are better for predicting HIV-1 coreceptor usage of subtype B viruses than the 11/25 and net charge rules used separately (5, 13). We have now assessed the performance of these combined criteria for predicting the tropism of subtype CRF02-AG viruses and those of the bioinformatic tools Geno2pheno.
The phenotypic assay revealed 42 virus populations with an R5 phenotype, and 10 virus populations with a dual/mixed R5X4 phenotype, but no virus population with a pure X4 phenotype. The genotypic classifications based on the combined criteria from the 11/25 and net charge rules and the Geno2pheno and WebPSSM tools were compared to the phenotype of the subtype CRF02-AG viruses (Table 1). The combined criteria from the 11/25 and net charge rules misclassified only four of the samples from the 52 patients (global concordance: 92%), while Geno2pheno misclassified 10 samples (global concordance: 81%), PSSM X4/R5 misclassified 12 samples and PSSM SI/NSI misclassified 7 samples (global concordance: 77 to 87%). The combined 11/25 and net charge rule criteria successfully detected CRF02-AG subtype CXCR4-using viruses with a sensitivity of 70% and a specificity of 98%. Geno2pheno lacked sensitivity (40%), while PSSM X4/R5 was sensitive (80%) but less specific (76%).

A recent study reported that the genotypic algorithms currently used lack sensitivity for detecting CXCR4-using viruses among non-B subtypes, but no details were given of their performance for particular subtypes (9). Subtype-specific genotype-phenotype correlations should be assessed because the genotypic determinants of coreceptor usage for some particular subtypes may be different. We found that the Geno2pheno tool lacked sensitivity for predicting the CXCR4 usage of subtype CRF02-AG viruses, although it performs well for subtype B viruses (13). In contrast, the combined 11/25 and net charge rule criteria were equally good at predicting the CXCR4 usage of both subtype CRF02-AG and subtype B
viruses (13). Bulk sequencing is less sensitive than the phenotypic assay to detect minor
CXCR4-using variants in the virus population, but the impact of such minor variants on the
clinical response to CCR5 antagonists remains to be determined. Multicenter studies
analysing the correlations between the genotypic determination of HIV-1 tropism and clinical
response to CCR5 antagonists are needed to validate this approach in clinical practice.

In conclusion, the combined criteria from the 11/25 and net charge rules performed
well for predicting the tropism of HIV-1 subtype CRF02-AG, while the Geno2pheno
bioinformatic tool did not. Simple genotypic methods could make the clinical use of CCR5
antagonists easier and cheaper than using phenotypic assays. Additional studies are needed to
assess the performances of the various genotypic algorithms for predicting the tropism of
other HIV-1 non-B subtypes.
REFERENCES

Table 1. Comparison of genotypic prediction of HIV tropism and the observed phenotype and performances of the V3 genotype for predicting the CXCR4 usage of HIV-1 CRF02-AG subtype.
Table 1. Comparison of genotypic prediction of HIV tropism and the observed phenotype and performances of the V3 genotype for predicting CXCR4 usage of HIV-1 CRF02-AG subtype.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
<th>Performances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R5</td>
<td>R5X4/X4</td>
</tr>
<tr>
<td>Combined 11/25 and net charge rule</td>
<td>R5</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>X4</td>
<td>1</td>
</tr>
<tr>
<td>Geno2pheno10</td>
<td>R5</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>X4</td>
<td>4</td>
</tr>
<tr>
<td>PSSM X4/R5</td>
<td>R5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>X4</td>
<td>10</td>
</tr>
<tr>
<td>PSSM SI/NSI</td>
<td>R5</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>X4</td>
<td>4</td>
</tr>
</tbody>
</table>

Se, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.