Evaluation of a Chromogenic Culture Medium for
Isolation of Clostridium difficile within 24 hours

John D. Perry¹*, Kerry Asir¹, Diane Halimi², Sylvain Orenga², Joanne Dale¹, Michelle Payne¹, Ruth Carlton¹, Jim Evans³ and F. Kate Gould¹.

Department of Microbiology, Freeman Hospital, Newcastle upon Tyne, UK¹;
Research & Development Microbiology, bioMérieux, La Balme-les-Grottes, France²;
Health Protection Agency, Newcastle upon Tyne, UK³

Running title: Chromogenic medium for Clostridium difficile.

* Corresponding author. Mailing address: Microbiology Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, NE7 7DN, UK. Phone: +44 191 2231226. Fax: +44 191 2231224. E-mail: john.perry@nuth.nhs.uk.
ABSTRACT

Rapid and effective methods for the isolation of *Clostridium difficile* from stool samples are desirable to obtain isolates for typing or to facilitate accurate diagnosis of *C. difficile*-associated diarrhoea. We report the evaluation of a prototype chromogenic medium (ID *C. difficile* prototype = IDCd) for isolation of *C. difficile*. The chromogenic medium was compared using (i) 368 untreated stool samples that were also inoculated onto CLO medium, (ii) 339 stool samples that were subjected to alcohol shock and also inoculated onto five distinct selective agars and (iii) standardized suspensions of 10 *C. difficile* ribotypes (untreated and alcohol-treated) that were also inoculated onto five distinct selective agars. Two hundred and thirty six isolates of *C. difficile* were recovered from 368 untreated stool samples and all but one of these strains (99.6%) were recovered on IDCd within 24 h compared with 74.6% of isolates recovered on CLO medium after 48 h. Of 339 alcohol-treated stool samples cultured onto IDCd and five other selective agars, *C. difficile* was recovered from 218 samples using a combination of all media. The use of IDCd allowed recovery of 96.3% of isolates within 24 h compared with 51-83% of isolates within 24 h using the five other media. Finally, when challenged with pure cultures, all 10 ribotypes of *C. difficile* generated higher colony counts on IDCd irrespective of alcohol pre-treatment or duration of incubation. We conclude that IDCd is an effective medium for isolation of *C. difficile* from stool samples within 24 h.
INTRODUCTION

Clostridium difficile is the primary infectious cause of nosocomial diarrhoea and is associated with recent administration of antibiotics. Renewed attention has been given to this pathogen due to the increase in both the incidence and the severity of *Clostridium difficile* infection (CDI) (17). Diagnosis of CDI is most commonly achieved by detection of toxins in stool samples using immunoassay although the positive predictive value of such assays can be unacceptably low in some populations (7). Methods for isolation of *C. difficile* using culture media are important in order to obtain isolates for typing, thus enabling outbreaks to be monitored and controlled (5, 6). More recently, routine culture of stool samples for *C. difficile* has been advocated as part of a diagnostic algorithm (10, 24, 26).

The first major advance in the design of selective culture media for *C. difficile* was the development of cycloserine cefoxitin fructose egg yolk agar (CCFA) by George *et al.* (12). Various studies have challenged the optimal levels of cycloserine and cefoxitin (2, 18, 19) and reduced concentrations of 250 mg/liter cycloserine and 8-10 mg/liter cefoxitin are now widely used, however the original formulation has been reaffirmed by others (20). Aspinall & Hutchinson recommended norfloxacin and moxalactam as alternative selective agents and reported a 20% increase in the yield of *C. difficile* from 832 stool samples when comparing their new medium with CCFA (1). Various additives have been proposed to promote germination of *C. difficile* spores and therefore enhance recovery, particularly from environmental samples. Bile salts such as cholic acid or
sodium taurocholate may be particularly effective and have been used to supplement CCFA to allow enhanced recovery of *C. difficile* from surveillance cultures (3). Wilcox *et al.* adapted cefsulodin cycloserine egg yolk agar (CCEY) by omitting egg yolk and including lysozyme at 5 mg/liter (30). The use of CCEY plus lysozyme significantly increased the recovery of *C. difficile* from 197 environmental swabs when compared with the use of CCEY alone. There are few comparisons of commercially available selective media for *C. difficile*. In one study, CCFA was compared with an Oxoid formulation that included cefoxitin at 8 mg/liter and cycloserine at 250 mg/liter as well as neutral red, cholic acid, glucose and 1% horse blood (4). In the same study, a medium from Becton Dickinson (BD) was also evaluated that contained the same level of selective agents and utilised mannitol plus a pH indicator to demonstrate fermentation by *C. difficile*. Ninety four toxigenic isolates of *C. difficile* were isolated, with 90.4% recovered on CCFA, 84% on Oxoid and 42.6% on the BD formulation.

As *C. difficile* readily forms spores, various treatments such as heat-shock or alcohol-shock may be applied to specimens for culture to reduce or eradicate vegetative cells and hence limit the growth of contaminating flora. Alcohol shock in particular has been shown to increase the yield of *C. difficile* from stool samples in some studies (19, 23). Media containing chromogenic enzyme substrates have been successfully developed to facilitate enhanced isolation of various bacterial pathogens (21) but have not yet been evaluated for isolation of *C. difficile*. The aim of this study was to evaluate a novel prototype chromogenic medium in comparison to commercially available media for detection of *C. difficile*.
MATERIALS AND METHODS

MATERIALS

A prototype chromogenic medium for *C. difficile* (ID *C. difficile* prototype = IDCd) was provided as pre-poured plates by bioMérieux, Craponne, France. CLO medium (Ref: 43431; bioMérieux, Basingstoke, UK) and BBL *Clostridium difficile* agar (Ref: 222228; Becton Dickinson, Oxford, UK) were purchased as pre-poured plates from their respective manufacturers. Oxoid *Clostridium difficile* agar base (Ref: CM0601; Oxoid, Basingstoke, UK) was prepared and sterilized according to manufacturer’s instructions and each liter was supplemented at 50°C with 7% v/v defibrinated horse blood and two vials of selective supplement containing moxalactam/norfloxacin (Ref: SR0173; Oxoid). CCEY agar (Ref: BC2160; Bioconnections, Wetherby, UK) was prepared and sterilized according to manufacturer’s instructions and each liter was supplemented at 50°C with 40 ml of egg yolk emulsion (Ref: S2073; Bioconnections), 10 ml of lysed horse blood and two vials of selective supplement containing cefoxitin/cycloserine (Ref: S2073; Bioconnections). Finally, an identical batch of CCEY was prepared and supplemented as described except that egg yolk was excluded and replaced with 5 mg of lysozyme (Ref: 7651; Sigma, Poole, UK) per liter of agar according to recommendations (30). Culture plates prepared in house were lightly dried and stored at 4°C for a maximum of one week before use. Commercially supplied media were stored at 4°C and used before specified expiry dates. Prolyl-7-amido-4-methylcoumarin (Ref: 1-1290) was obtained from Bachem, (Saffron Walden, UK). The following strains, obtained from the National
Collection of Type Cultures (NCTC), Colindale, UK were selected from to control culture media, atmospheric conditions and identification protocols; C. difficile NCTC 11209, Clostridium bifermentans NCTC 506, Clostridium sordellii NCTC 8780 and Pseudomonas aeruginosa NCTC 10662. API strips were purchased from bioMérieux, Basingstoke, UK.

Comparison of the prototype chromogenic medium (IDCd) with CLO medium for isolation of C. difficile from stool samples.

Eligible stool samples for testing comprised any diarrheal samples that had requested C. difficile toxin testing. On arrival at the laboratory, specimens were refrigerated and stored for up to three days before culture. On day 1, all samples were processed using the VIDAS Immunoassay for detection of C. difficile toxins A and B. This was to ensure that a predominance of positive samples could be selected for evaluation of culture media. A total of 268 VIDAS-positive samples and 100 VIDAS-negative samples were selected for culture on the two media. Each specimen (1 ml or 1 g) was homogenized in 2 ml sterile distilled water to form an even suspension. Alcohol treatment was avoided so that the selectivity of the media could be assessed. A 10 µl aliquot of this suspension was inoculated onto IDCd and CLO medium and spread to obtain isolated bacterial colonies. All media were incubated in an anaerobic workstation at 37°C for a full 24 h period and then removed into air for interpretation and selection of colonies for identification. After a maximum of 30 minutes in air, culture plates were re-incubated anaerobically for a further 24 h.
All colonies were initially investigated by Gram stain and any possible isolates of *C. difficile* were subcultured onto CCEY for further investigation (see below). Non-*C. difficile* isolates on CLO medium were investigated and assigned to presumptive genera by Gram stain and simple biochemical tests e.g. catalase. Non-*C. difficile* isolates forming black colonies on IDCd were fully identified to genus or species level using appropriate API galleries.

Comparison of IDCd with five selective media for isolation of *C. difficile* from stool samples.

A total of 226 VIDAS-positive samples and 113 VIDAS-negative samples were selected for culture on the six media. These comprised IDCd, CLO, BBL, Oxoid, CCEY and CCEY/L (CCEY plus lysozyme). Specimens were processed using the alcohol shock method recommended by the UK Health Protection Agency. Each specimen (1 ml or 1 g) was homogenized in 1 ml of absolute alcohol, vortexed to form an even suspension and left to stand at room temperature for 30 min. A 50 µl aliquot of this suspension was inoculated onto each of the six media and spread to obtain isolated bacterial colonies. All media were incubated at 37°C in an anaerobic workstation with an atmosphere comprising 80% nitrogen, 10% carbon dioxide and 10 % hydrogen. After incubation for a full 24 h period cultures were then removed into air for interpretation and selection of colonies for testing. After a maximum of 30 minutes in air, culture plates were re-incubated anaerobically for a further 24 h. All colonies, irrespective of appearance, were initially investigated by Gram stain and any possible isolates of *C. difficile* were
Identification, typing and toxin testing of C. difficile

Suspect colonies subcultured onto CCEY were confirmed as C. difficile by their characteristic morphology, natural yellow-green colony fluorescence under long wave UV light, lack of lecithinase activity (i.e. lack of opalescence surrounding colonies on CCEY) and their ability to hydrolyze prolyl-7-amido-4-methylcoumarin. For the latter test, substrate solution (1 mg/ml) was added directly to bacterial colonies on CCEY medium before incubation in air at 37°C for 30 minutes. Generation of blue fluorescence under long wave UV light indicated a positive reaction and presence of prolyl aminopeptidase. Further confirmation of species identity required generation of a PCR product in the PCR ribotyping assay, which was performed as previously described (28). For interest, any isolates of C. difficile recovered from VIDAS-negative specimens were tested by PCR for the presence of the toxin B gene. This was performed using the Xpert C. difficile assay using the GeneXpert Dx System (both Cepheid, Maurens-Scopont, France). The assay utilised primers for the toxin B gene (tcdB), binary toxin (cdt) and tcdC deletion at nucleotide 117. Internal controls were included with each individual test cartridge. The test procedure was performed according to manufacturer’s instructions. Briefly, a sub-culture of the isolate was suspended in sterile, de-ionised water to a density equal to 0.5 McFarland units. A swab was dipped into the prepared suspension and left to soak for one minute. The swab was broken off into the sample reagent and the suspension...
vortexed at high speed for 10 seconds. The entire suspension was transferred into the
sample chamber of the Xpert *C. difficile* cartridge. Reagents 1 and 2 were added to the
appropriate chambers of the cartridge. The cartridge was programmed into and loaded
onto the GeneXpert Dx system. Assay time was 45 minutes. PCR testing was not
performed on *C. difficile* isolates from VIDAS-positive stool samples. Such isolates were
assumed to be toxigenic although this was not proven.

Comparison of IDCd with five selective media for cultivation of pure strains of *C.
difficile*.

Ten strains of *C. difficile* representing distinct ribotypes (001, 002, 005, 015, 016, 023,
027, 064, 078, 106) were incubated anaerobically for 48 h on Columbia blood agar plates.
Colonies of each were then suspended in 0.85% sodium chloride solution (saline) to a
density equivalent to 2.0 McFarland units using a densitometer. This suspension was
diluted 1/5000 and 1/50000 in saline and 50 µl of each dilution was inoculated onto a
culture plate. The inoculum was spread to form a lawn using a sterile loop. Each of the
six different culture media described above was inoculated in this way. All media were
incubated in an anaerobic workstation at 37°C for a full 24 h period and then removed
into air so that colony counts could be performed. After a maximum of 30 minutes in air,
culture plates were re-incubated anaerobically for a further 24 h and further counts were
performed. The experiment was performed in duplicate on separate occasions and colony
counts were averaged. The above experiment was also repeated in duplicate using
absolute alcohol in place of saline for preparation of the initial bacterial suspensions.
After 30 minutes in alcohol, dilutions were performed in saline and were cultured and examined exactly as described above.

Statistical methods. The student’s *t*-test was used to compare mean colony counts obtained on different selective media. The various methods for isolation from clinical samples were compared with each other for statistical significance using McNemar’s test. Probability (*P*) ≤ 0.05 was used to infer statistical significance.

RESULTS

Comparison of IDCd with CLO medium for isolation of *C. difficile* from stool samples.

Table 1 shows the performance of IDCd with 268 VIDAS-positive stool samples. *C. difficile* was recovered from 230 specimens (86%) using a combination of both media and all isolates were recovered on IDCd after 24 h incubation. Around 3% of isolates failed to generate black colonies after 24 h incubation and 1% remained colourless after 48 h incubation. For calculation of sensitivity, these were regarded as undetected. Only 59% of isolates could be recovered on CLO medium after 24 h incubation and even after 48 h incubation, 24% of isolates remained uncultured. The performance of CLO was significantly inferior to that of IDCd, even after 48 h incubation (*P* < 0.001). Of the isolates that could be typed, it was found that 11 distinct ribotypes were isolated including 001 (*n* = 33), 106 (*n* = 27), 016 (*n* = 22), 027 (*n* = 21), 015 (*n* = 12), and others.
C. difficile was recovered from six (6%) VIDAS-negative stool samples using a combination of both media and 5/6 isolates were recovered on IDCd after 24 h incubation with the sixth isolate recovered on IDCd after 48 h. All six isolates formed black colonies on IDCd but only two isolates were recovered using CLO medium (one after 24 h). All six isolates recovered from VIDAS-negative stool samples were found to harbour the toxin B gene when tested by PCR. When VIDAS-positive stool samples were cultured onto IDCd, non-C. difficile isolates were recovered from around 10% of samples (26/268). Non-C. difficile isolates presenting as grey or black were recovered from around 8% of samples (22/268). Non-C. difficile isolates were much less common after only 24 h of incubation with only four isolates forming black colonies from 268 toxin-positive samples (Table 2). The commonest ‘false-positive’ species encountered was Clostridium clostridioforme, a spore forming anaerobe typically presenting as a Gram-negative rod. This species was isolated from 4.5% of toxin-positive stool samples and from 22% of toxin-negative stool samples (Table 2).

Non-C. difficile isolates were much more abundant (or much more easily recovered, due to lower yields of C. difficile) from toxin-negative samples with 11 of 17 isolates forming grey or black colonies after 24 h incubation (Table 2) and 47 of 49 isolates forming grey
or black colonies after 48 h incubation. Predominant species were *Clostridium
clostridioforme* and *Bacteroides* spp. CLO was much less selective than IDCd with non-
C. difficile isolates recovered from over half of all samples. Lactobacilli were the
commonest species recovered (see table 3). Commensal bacteria frequently outnumbered
C. difficile and selection of *C. difficile* colonies was frequently compromised by the large
amounts of other species present.

Comparison of IDCd with five selective media for isolation of *C. difficile* from stool
samples after alcohol-shock treatment.

A total of 226 VIDAS-positive stool samples were subjected to alcohol-shock and
cultured onto the six selective media. From these, 199 isolates of *C. difficile* were
recovered using a combination of all media. A total of 10 ribotypes were recovered
including 001 (*n* = 35), 016 (*n* = 23), 027 (*n* = 12), 015 (*n* = 10), and others (*n* < 10)
including 002, 005, 023, 064, 078 and 106.

All isolates were recovered on IDCd medium and 197 (99%) were present after only 24 h
incubation. Recovery was significantly better on IDCd than on any other medium after 24
h incubation (*P* < 0.001). On IDCd, 94.5% of all *C. difficile* isolates were recovered as
grey/black colonies after 24 h incubation and 98% presented as grey/black colonies after
48 h incubation. Recovery of *C. difficile* on the other five media was good after 48 h
incubation (sensitivity: 96–98%) but was more variable after only 24 h ranging from
53% for CCEY/L to 87% for CCEY (see Table 4). Both BBL and CCEY/L were inferior to all other test media after 24 h incubation ($P < 0.001$).

A total of 19 isolates of *C. difficile* were recovered from 113 VIDAS-negative stool samples cultured following alcohol-shock using a combination of all six media. Only six of these 19 isolates were positive by PCR for toxin B gene. Seventeen isolates were recovered on CLO medium after 48 h incubation with fewer isolates on other media. IDCd showed the best recovery after 24 h incubation (see Table 5). Despite the use of alcohol shock, other flora were recovered on all media and IDCd was the least selective with VIDAS-negative stool samples, from which 34 isolates of other species generated grey or black colonies after 48 h incubation. (Table 5).

Comparison of IDCd with five selective media for cultivation of pure strains of *C. difficile*.

Figures 2a-d show the average colony counts of 10 distinct ribotypes of *C. difficile* on six selective agars. All 10 ribotypes consistently showed a higher count on IDCd medium than on any other agar irrespective of incubation time or the use of alcohol shock treatment. The mean count of the 10 ribotypes on IDCd was significantly higher compared to any other medium under any conditions ($P < 0.005$). For example, the mean count for the 10 ribotypes on IDCd was at least 3.7 times higher than that achieved on CCEY agar under any conditions and over 30 times higher than that achieved on CLO under any conditions. It was notable that there was very little increase in colony count on
IDCd over the second period of incubation (< 1% increase for cells in saline suspension and 3.5% increase for suspensions in alcohol), based on average figures for the 10 ribotypes. This contrasted with a 684% - 921% increase in colony numbers during the second period of incubation on Oxoid medium for saline treated and alcohol treated cells respectively. After 48 h incubation, mean colony counts on CCEY and BBL were significantly higher than on CLO in untreated suspensions ($P < 0.05$) and mean colony counts from alcohol suspensions were significantly lower on CLO than those achieved using any other medium ($P < 0.005$).

DISCUSSION

For several reasons there is renewed interest in culture media for the isolation of *C. difficile*. One reason is the emergence of so-called ‘hypervirulent’ strains that cause outbreaks of infection associated with an increased severity of disease and significant mortality (14, 17). In order to track the spread of such strains it is usually necessary to isolate them by culture and perform molecular typing. Also, due to the well recognized limitations of immunoassays, there is a desire by some laboratories to have access to a test with high sensitivity and specificity that may be used as part of a diagnostic algorithm (10, 25, 26). The faecal cytotoxin assay for direct detection of toxin in stool samples using cell lines and specific neutralization was recognized as the ‘Gold standard’ for diagnosis of CDI. However, there is clear evidence that culture followed by demonstration of toxin production by isolates (‘toxigenic culture’) is a more sensitive assay for detection of toxigenic *C. difficile* than the faecal cytotoxin assay (8, 13, 15, 16, 14).
One study reported 29 patients with proven pseudomembranous colitis that tested negative in the faecal cytotoxin assay, however nine of the 29 samples were submitted for culture and all nine contained toxigenic *C. difficile* (16). In one large seven year study, toxigenic culture resulted in the diagnosis of 355 cases of CDI that would have been missed using the faecal cytotoxin assay alone (8). For these reasons, cytotoxigenic culture is now widely recognized as the ‘Gold standard’ (9). It is worth emphasizing that culture of *C. difficile* alone has little positive predictive value for diagnosis of CDI without subsequent demonstration of the isolate’s ability to produce cytotoxin. This can be directly demonstrated by testing culture supernatants on cell lines or by using immunoassays or may be inferred by PCR (8, 11, 29).

We have compared a prototype chromogenic medium for *C. difficile* with five selective agars including four brands from leading suppliers in the UK. Samples were pre-selected on the basis of results obtained with the VIDAS immunoassay. This was purely to ensure that a predominance of positive samples was used to compare the different culture media. The most notable feature of IDCd was its ability to induce high colony counts of *C. difficile* within 24 h incubation. In this respect it was significantly better than comparators when challenged with pure cultures, presumably due to a superior ability to stimulate germination. It is well recognised that higher colony counts can be obtained by the inclusion of suitable germinants. For example, a recent study compared CLO medium with Columbia blood agar supplemented with 0.1% taurocholate plus cycloserine/cefoxitin. The authors challenged both media with 130 stool samples and found that colony counts of *C. difficile* were on average 30 times higher on the medium
containing taurocholate (24). On IDCd medium, when media were challenged with pure cultures, average colony counts were at least 30 times higher than those obtained on CLO and at least 100 times higher when alcohol treated suspensions were used. One advantage of enhanced germination is that colonies readily form within 24 h incubation. By combining all of the results of this study it can be seen that 454 of 707 stool samples were found to contain *C. difficile* and 445 (98%) were recovered on IDCd within 24 h incubation. Given this high recovery rate, it can be argued that IDCd should not be incubated beyond 24 h as the specificity of the medium decreases as other flora is increasingly isolated. It should be noted that, when alcohol shock was used, there was no significant difference between IDCd and CCEY, Oxoid or BBL after 48 h incubation. One limitation of the study is that after 24 h incubation plates were removed into air for up to 30 minutes to allow for effective investigation of colonies that may have become overgrown at 48 h. It is therefore conceivable that the yield of *C. difficile* might have been higher on any medium after 48 h, if anaerobic incubation had not been interrupted.

Wilcox et al. (30) reported that the incorporation of lysozyme into CCEY medium was advantageous for the recovery of *C. difficile* from environmental samples. Although no benefit has been reported with stool samples, it was surprising to see an apparent detrimental effect of lysozyme on the recovery of *C. difficile* from alcohol-treated stool samples, and this was particularly noticeable after 24 h incubation (*P* < 0.001).

IDCd is the first chromogenic medium for *C. difficile* and contains an enzyme substrate that is hydrolyzed to generate black colonies. The nature of the chromogenic system is
proprietary and undisclosed by the manufacturer. By combining all study results it can be seen that 96.6% of \textit{C. difficile} isolates recovered on IDCd formed grey/black colonies after 24 h and 98.4% were grey or black after 48 h on IDCd. The few isolates of \textit{C. difficile} forming colourless colonies on IDCd (7/451 isolates; 1.6%) were regarded as ‘undetected’ but in practice they were readily distinguishable as \textit{C. difficile}, due to a characteristic flat irregular colony. The \textit{C. difficile} isolates forming colourless colonies were ribotype 023 ($n = 3$), ribotype 001 ($n = 1$) or untypable ($n = 3$). The main advantage of the chromogenic reaction was the formation of black colonies that contrasted sharply with the clear background agar enabling easy detection of \textit{C. difficile}. As most other species that were recovered also produced black colonies, there is scope for improvement in the specificity of the agar either by improved inhibition or differentiation of competing flora. In conclusion, IDCd offers effective isolation of \textit{C. difficile} within only 24 h with or without the use of alcohol shock treatment. Further studies are warranted in different geographical locations to further assess the suitability of this medium for routine diagnostic use. Studies to examine the compatibility of immunoassays for confirmation of toxin production by isolated colonies would also be worthwhile.

\textbf{ACKNOWLEDGEMENTS}

The authors are grateful to bioMérieux, La Balme les Grottes, France for providing funding and media to support this study. The authors are also grateful to the North East Strategic Health Authority, UK, for providing funding for ribotyping of \textit{Clostridium difficile} isolates. The first part of this work comparing IDCd and CLO medium was
presented at the 20 th European Congress for Clinical Microbiology and Infectious Diseases, Vienna, 2010 (Abstract P678).

J.D.P. has received financial support for research or consultancy from suppliers of chromogenic culture media including bioMérieux and Becton Dickinson. D.H. and S.O. are employed by bioMérieux and have received financial remuneration for patent applications and registrations. The other authors have no relevant disclosures.

REFERENCES

9. **Eastwood K., P. Else, A. Charlett, and M. Wilcox.** 2009. Comparison of nine commercially available *Clostridium difficile* toxin detection assays, a real-time
PCR assay for *C. difficile* *tcdB*, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J. Clin. Microbiol. 47:3211-3217.

TABLE 1. Numbers of *C. difficile* isolates recovered on CLO and IDCd from 268 VIDAS-positive stool samples.

<table>
<thead>
<tr>
<th>Medium</th>
<th>No. of positive specimens:</th>
<th>% isolates recovered</th>
<th>Sensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive by culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any(^a)</td>
<td>230</td>
<td>59%</td>
<td>59</td>
</tr>
<tr>
<td>CLO medium (24 h)</td>
<td>136</td>
<td>59%</td>
<td>59</td>
</tr>
<tr>
<td>CLO medium (48 h)</td>
<td>174</td>
<td>76%</td>
<td>76</td>
</tr>
<tr>
<td>IDCd (24 H)</td>
<td>230 (224)(^b)</td>
<td>100%</td>
<td>97</td>
</tr>
<tr>
<td>IDCd (48 H)</td>
<td>230 (227)(^b)</td>
<td>100%</td>
<td>99</td>
</tr>
</tbody>
</table>

\(^a\)Total number of isolates recovered.

\(^b\)Numbers in parenthesis indicate number of isolates forming grey or black colonies.

TABLE 2. Non-*C. difficile* isolates recovered on IDCd from 368 stool samples:

<table>
<thead>
<tr>
<th>Isolate Type</th>
<th>Total 24 h</th>
<th>48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium clostridioforme</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>22</td>
<td>8</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium fallax</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus species</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides distasonis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides ovatus</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>3</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides thetaiotamicron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides uniformis</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides vulgatus</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capnocytophaga sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyromonas endodontalis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified Gram-negative rod</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>26</td>
<td>4</td>
<td>22</td>
<td>17</td>
<td>49</td>
<td>11</td>
<td>47</td>
</tr>
</tbody>
</table>
TABLE 3. Non-\textit{C. difficile} isolates recovered on CLO from 368 stool samples:

<table>
<thead>
<tr>
<th></th>
<th>Vidas-positive samples ((n = 268))</th>
<th>Vidas-negative samples ((n = 100))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>\textit{Lactobacillus species}</td>
<td>57</td>
<td>109</td>
</tr>
<tr>
<td>Gram-negative rods</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>Gram positive cocci</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>\textit{Corynebacterium species}</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>\textit{Clostridium perfringens}</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Yeast</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>144</td>
</tr>
</tbody>
</table>

TABLE 4. Recovery of \textit{C. difficile} and other species from 226 VIDAS-positive stool samples using six selective media\(^b\).

\textbf{24 h incubation.}

<table>
<thead>
<tr>
<th></th>
<th>\textit{IDCd}(^b)</th>
<th>\textit{BBL}</th>
<th>\textit{Oxoid}</th>
<th>\textit{CLO}</th>
<th>\textit{CCEY}</th>
<th>\textit{CCEY/L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{No. of \textit{C. difficile}}</td>
<td>197 (188)</td>
<td>129</td>
<td>171</td>
<td>167</td>
<td>174</td>
<td>106</td>
</tr>
<tr>
<td>\textbf{% of total}</td>
<td>99 (94.5)</td>
<td>65</td>
<td>86</td>
<td>84</td>
<td>87</td>
<td>53</td>
</tr>
<tr>
<td>\textbf{Other species}</td>
<td>2 (2)</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\textbf{48 h incubation}

<table>
<thead>
<tr>
<th></th>
<th>\textit{IDCd}(^b)</th>
<th>\textit{BBL}</th>
<th>\textit{Oxoid}</th>
<th>\textit{CLO}</th>
<th>\textit{CCEY}</th>
<th>\textit{CCEY/L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{No. of \textit{C. difficile}}</td>
<td>199 (195)</td>
<td>194</td>
<td>196</td>
<td>193</td>
<td>195</td>
<td>191</td>
</tr>
<tr>
<td>\textbf{% of total}</td>
<td>100 (98)</td>
<td>97</td>
<td>98</td>
<td>97</td>
<td>98</td>
<td>96</td>
</tr>
<tr>
<td>\textbf{Other species}</td>
<td>5 (5)</td>
<td>10</td>
<td>23</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^b\)Numbers in parenthesis indicate number of isolates forming grey or black colonies.
\(^c\)A total of 199 isolates were recovered within 48 h using a combination of all media.
TABLE 5: Recovery of *C. difficile* from 113 VIDAS-negative stool samples using six selective media\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>24 h incubation.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDCd(^b)</td>
<td>BBL</td>
<td>Oxoid</td>
<td>CLO</td>
<td>CCEY</td>
</tr>
<tr>
<td>No. of C. difficile</td>
<td>13 (13)</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>% of total</td>
<td>68 (68)</td>
<td>37</td>
<td>53</td>
<td>63</td>
<td>47</td>
</tr>
<tr>
<td>Other species</td>
<td>12 (12)</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>48 h incubation</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDCd(^b)</td>
<td>BBL</td>
<td>Oxoid</td>
<td>CLO</td>
<td>CCEY</td>
</tr>
<tr>
<td>No. of C. difficile</td>
<td>16 (16)</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>% of total</td>
<td>84 (84)</td>
<td>74</td>
<td>84</td>
<td>89</td>
<td>84</td>
</tr>
<tr>
<td>Other species</td>
<td>34 (34)</td>
<td>26</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
</tbody>
</table>

\(^b\)Numbers in parenthesis indicate number of isolates forming grey or black colonies.

\(^c\)A total of 19 isolates were recovered within 48 h using a combination of all media.
FIG. 1: Culture of *C. difficile* from a stool sample after 24 h incubation on IDCd (left) and CLO (right). On IDCd, *C. difficile* forms typical black colonies whereas the CLO plate shows no growth.
FIG. 2a-d. Average colony count for 10 distinct ribotypes of *C. difficile* on six selective agars under different conditions.

a) No alcohol treatment; 24 h incubation.

b) No alcohol treatment; 48 h incubation.
c) Inoculum treated with alcohol: 24 h incubation

![Graph showing bacterial counts for different media after 24 h incubation.]

- IDCd
- CCEY
- CCEY/L
- Oxoid
- BBL
- GLO

- Count: 10^6 CFU/ml

d) Inoculum treated with alcohol: 48 h incubation

![Graph showing bacterial counts for different media after 48 h incubation.]

- IDCd
- CCEY
- CCEY/L
- Oxoid
- BBL
- GLO

- Count: 10^6 CFU/ml