A case of recurrent sepsis with *Streptococcus pyogenes*

By: Magnus Rasmussen

From the Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.

Magnus Rasmussen, M.D., Ph.D.
Department of Clinical Sciences
Division of Infection Medicine
BMC B14
Tornavägen 10
221 84 Lund
Sweden
Magnus.Rasmussen@med.lu.se
Telephone: +46-462220720
Fax: +46-46157756
Abstract

I report that a 75-year-old man with severe atherosclerosis experienced two episodes of bacteremia with *Streptococcus pyogenes* of type *emm* 87. Recurrent sepsis with *S. pyogenes* is extremely rare and a foot ulcer was the suspected point of entry. The patient did not develop opsonizing antibodies to the isolate.

Case report

The patient, a 75-year-old man, presented in March 2010 at our hospital with a 24-hour history of disorientation and fever. He was a smoker, had diabetes mellitus type II, postapoplectic epilepsy, and claudicatio intermittens. He had a mechanic aortic valve since 1989, had suffered a cerebral infarction in 2002, and had been subjected to coronary artery bypass grafting in 2003. Upon examination, a temperature of 38.1°C and tachycardia was noted but other vital signs were normal. Neurological examination revealed left sided finger-nose dysmetria. A tender redness was noted around the left big toe. The white blood cell count (WBC) was 9.8 x 10^9/liter and C-reactive protein (CRP) was 7 mg/liter. A CT-scan of the brain showed no signs of bleeding or ischemia, though several older lesions were seen. Chest X-ray was unremarkable. The patient received empirical treatment with cefotaxime. Both sets of blood cultures (BacT/Alert; Biomerieux, Durham, NC) grew group A *Streptococcus* (GAS) as did the culture from the infected toe and treatment was changed to penicillin G. In addition, the culture from the toe grew *Staphylococcus aureus* and the urine grew *Escherichia coli*. Transesophageal echocardiography did not show signs of prosthesis endocarditis and the patient improved over the following days with less disorientation and fever. A maximum CRP of 49 mg/liter was noted. The bacteremia was judged to be secondary to the wound on the toe and treatment with penicillin G (3 g t.i.d.) was continued for six days followed by 14 days of clindamycin (300 mg t.i.d.).

In April 2010 the patient suffered a cerebral infarction and in May 2010 he reappeared in the emergency room. He had had an epileptic seizure and was febrile. He was lucid but not entirely oriented. Tachycardia and elevated breathing frequency was noted and the temperature was 40.1°C. The tip of the left big toe was necrotic, but it was not overtly infected. Otherwise physical examination was unremarkable. WBC was 17 x 10^9/liter and CRP was 19 mg/liter. Chest X-ray was normal. Treatment with
Cefotaxime was instituted and the patient became apyrexic within 24 hours. Both blood cultures were positive for GAS, as was a culture from a small wound on the left foot. Treatment was changed to penicillin G and a renewed transesophageal echocardiography could not reveal signs of endocarditis. Intravenous treatment was given for 7 days and was followed by penicillin V for 14 days.

In July 2010 the patient experienced increased pains from his both feet. Upon examination, the feet were cold and no pulses could be felt. The wound showed increased signs of inflammation and wound cultures again grew GAS. The patient was treated with clindamycin for 14 days. Since it was obvious that the patient had critical ischemia of both feet, an endovascular revascularization procedure was tried in August but resulted in massive embolization to the periphery. A conservative approach was undertaken since the patient refused amputation. The patient left the hospital for a nursing home in September and his condition deteriorated gradually. The last few days he was stuporous and 24 hours before passing away the patient became febrile. An autopsy was not performed.

Invasive infections with GAS cause considerable morbidity and mortality worldwide (3) and the majority of GAS belong to the genus *S. pyogenes*. Though recurrent skin and throat infections are typical for GAS, recurrent invasive disease infection has to my knowledge been reported only two times previously (1, 14). In one of the two cases the causative GAS was found to be a *Streptococcus equisimilis* (1), commonly carrying a group C or G carbohydrate antigen, and in the other case an intravenous drug abuser had recurrent septic arthritis and bacteremia with a GAS isolate not further classified (14). In contrast to the lack of reports of recurrent bacteremia with *S. pyogenes*, reports about β-haemolytic streptococci of groups C and G, which share many features with *S. pyogenes*, causing recurrent bacteremia are numerous (4, 10, 13, 16, 17).

The isolates from the two episodes of bacteremic infection were according to standard laboratory procedures classified as GAS by typical appearance upon Gram-staining and on blood agar as well as by latex agglutination. T-typing as described in (11) identified both isolates as T28. Both isolates were subjected to sequencing of the 16S
rRNA as described (7), and the sequences were identical to each other (833 base pairs identical). A blast search revealed that the sequences were very similar to published 16S sequences from *Streptococcus pyogenes* (832/833 base pairs were identical). This confirms that the isolates indeed were of the genus *S. pyogenes*. Most isolates of T28 are of M-type 28 (11, 15) and therefore PCR with primers hybridizing with the *emm*28 gene was performed as described (7) with the exception of the reverse primer which was changed to 5’-GTAAAGAATGGGTTAGCTGC-3’. From both isolates a fragment of 1 kb was amplified and partial sequencing of the 5’-part of the PCR product revealed that it was identical between the two isolates. A BLAST-search showed that the amplified product was very similar (283/284 bases identical) to sequences of *emm*87. Rep-PCR with the diversilab system (Biomerieux, v3.4) was performed according to the instructions from the manufacturer on the two isolates from the patient along with two recent clinical isolates of T28 serotype and on isolate of T1 type. The results are shown in figure 1. The two isolates from the patient are highly similar supporting that they belong to the same clone. Unfortunately the GAS isolates from the wounds were not available for typing. *S. pyogenes* of type emm87 is not uncommon in invasive infections and is often associated with soft tissue infections like cellulitis (11). Isolates of type *emm*87 are also common in non-invasive disease (8) and most often display T-type 28 (11). Nothing is known about potential virulence mechanisms of this particular M-type.

The lack of recurrent bacteremic infections with *S. pyogenes* is likely explained by specific opsonizing antibodies formed against the M protein during infection (6, 9, 12). The M protein is a virulence determinant of GAS mediating survival in fresh human blood and it is used for serotype determination. Type-specific immunity against *S. pyogenes* depends on antibodies towards the hypervariable amino-terminal part of M proteins (5), but repeated infections can also yield protective antibodies directed to conserved epitopes of the M protein (2). The *S. pyogenes* isolated from the patient was tested for growth in non immune human blood essentially as described previously (Lancefield, 1957 #182). After a two hours incubation, 3-12 times the initial number of bacteria was present in fresh heparinized blood from two healthy donors (n=3). If type-specific opsonizing antibodies were present in the patient’s serum these would have opsonized the isolate in the non immune blood (Lancefield, 1957 #182). The isolate grow in blood from the same donors after the addition of
convalescence serum from the patient to the same extent as without the patient serum (50 µl (drawn at the visit in July) to 250 µl blood and 50 µl diluted bacterial culture). As a control, the API stain of M1 serotype was shown to multiply in the blood of both donors whereas it did not grow when serum known to contain anti M1 antibodies was added. The apparent lack of opsonizing antibodies was surprising since initial analyses had shown that the isolate was unable to grow in fresh blood drawn from the patient (also from July). Importantly, the patient was not on treatment with antibiotics at the time of sampling. Since the patient died shortly after these experiments, they could not be repeated. Thus, it seems that the blood of the patient had some protective factors that were not type-specific opsonizing antibodies. The overall immunoglobulin levels of the patient were normal as determined by routine diagnostic procedures indicating that there was not a global impairment of antibody production but rather a putative lack of a specific subset of antibodies. The complement function was normal.

The lack of development of opsonizing antibodies could perhaps help to explain the seemingly unique event of a recurrent bacteremic *S. pyogenes* infection. The infected necrotic toe had diminished local defense mechanisms due to the ischemia and was probably the site for bacterial entry. Despite the many similarities between streptococci of groups A, C, and G the propensity to cause recurrent disease seems to differ significantly. More work is needed to provide a molecular explanation to this phenomenon.

Acknowledgements

The Swedish Government Funds for Clinical Research (ALF) financed this work. Dr Ann Cathrine Peterson is acknowledged for important advice and I thank Lisbeth Elfström for help with the rep-PCR. The patient gave his informed consent to the writing of this report. The regional ethical board approved of the sampling procedures used (2008/657).

Legend to figure
Figure 1. Results from the rep-PCR analysis of two recent T28 blood isolates (1 and 2), of the two blood isolates from the patient (3 and 4), and of a recent clinical T1 isolate (5).

References


180
183
186
189