Massilia timonae infection presenting as generalized lymphadenopathy in a man returning from Nigeria.

Amaryllis H. van Craenenbroeck a,*, Kim Camps b, Pierre Zachée a, Ka Lung Wu a

a Department of Hematology, ZNA Stuivenberg, Antwerpen, Belgium
b Department of Microbiology, ZNA Stuivenberg, Antwerpen, Belgium

* Corresponding author. ZNA Stuivenberg, Lange Beeldekensstraat 267, 2060 Antwerpen, Belgium. Tel.: +32 3 2177392. E-mail: Amaryllis.VanCraenenbroeck@ua.ac.be
Abstract

We report a case of apparent malaria infection presented with a syndrome of painless, generalized lymphadenopathy without granulomas shortly after exposure to fresh water in rural West Africa. Residual infection with *Massilia timonae* was diagnosed and successfully treated with cotrimoxazole.
Case report

A 52-year-old man, born in Nigeria and living in Belgium since 1996, was admitted to our hospital with a seven-day history of fever, myalgia and lymphadenitis. The fever was intermittent with spikes of fever following chills on alternating days. Two weeks earlier, he visited his family in Nigeria for a 2-months vacation. He did not take any malaria prophylaxis and reported swimming in a lake outside Lagos. Once returned in Belgium, he continued his usual life as unemployed person, spending most of his time indoors. His medical history revealed diabetes mellitus and previous malaria.

At the time of admission, the patient was conscious and alert, had a temperature of 38.5°C, pulse rate of 120 beats/min and blood pressure of 120/80 mmHg. Physical examination revealed multiple firm and non-tender cervical, axillary and inguinal lymphadenopathies with a size up to 2 cm. Abdominal examination showed tenderness in the right upper quadrant. The rest of the physical examination was unremarkable.

Hematological investigations showed a hemoglobin level of 11.5 g/dl [reference values 12.9 – 16.4], a platelet count of 69 x 10⁹/l [ref. 142 – 340], a total leukocyte count of 13.1 x 10⁹/l [ref. 3.45 – 9.76] with a normal differentiation. Biochemical investigations were normal, except for mildly elevated LDH 790 U/l [ref. 313-618] and elevated CRP 30 mg/dl [ref. <0.5]. A rapid diagnostic test (RDT) for malaria [BinaxNOW Malaria test, Inverness Medical Binax, Inc., Scarborough, Maine, USA] was positive for Plasmodium falciparum protein antigen. According to the manufacturer, overall sensitivity for P. falciparum of the BinaxNOW Malaria test in an endemic population is 95.3% (95% CI 93-97%) and overall specificity for the same antigen 99.8% (95% CI 99-100%). Similar performance characteristics of the test were found in Rounds 1 and 2 of the WHO RDT testing scheme (sensitivity 100% in high parasite density samples and specificity 95%). Blood and urine cultures were sterile. Computed tomography scans were performed and showed diffuse lymphadenopathy with a diameter of 2-3 cm in the cervical, mediastinal, axillary and pelvic regions. The liver and spleen were normal in size.
The patient was treated for malaria with oral quinine 1500 mg daily and doxycycline 100 mg twice daily for seven days. The clinical state of the patient improved and he became afebrile within three days.

The enlargement of the lymph nodes persisted and therefore a biopsy of a cervical lymph node was performed two weeks later. Histocytological analysis of the biopsy revealed a diffuse nonspecific inflammation with infiltration by small and large lymphocytes. Immunohistochemical staining for the B-cell marker CD20 showed a preserved architectural structure of the lymph node with no arguments for B-cell lymphoma. There was some positivity for CD30, but the absence of cells with typical Reed-Sternberg morphology and negative staining for CD15 of these CD30 positive cells, made the diagnosis of Hodgkin lymphoma very unlikely. In conclusion, no arguments for hematologic disease could be found.

Direct examination of the lymph node by Gram staining and Ziehl-Neelsen staining was negative. Lymph node culture on blood agar at 37°C showed growth of nonfermentative gram-negative bacilli after two days. Tests for oxidase and catalase were positive.

Using a standardized disk diffusion technique with Neo-Sensitabs [Rosco Diagnostica A/S, Taastrup, Denmark] for *Pseudomonas aeruginosa*, the gram-negative bacilli appeared to be susceptible to meropenem, piperacillin/tazobactam, ceftazidime, amikacin, ciprofloxacin and co-trimoxazole, and resistant to ampicillin, amoxicillin-clavulanate and cefuroxime. The patient was treated with co-trimoxazole and the lymphadenopathy resolved within 3 weeks.

To identify the bacterial isolate, a 16S rRNA sequence analysis was performed on the culture originating from the lymph node. Following DNA extraction, PCR amplification was executed using the MicroSeq 500 16S rDNA PCR kit [Applied Biosystems]. After purification of the PCR-product, analysis was performed with the ABI PRISM 310 genetic analyzer. The obtained sequences of the strain were aligned with the EMBL Nucleotide Sequence Database (accession number U54470) and displayed 99.7% homology for *Massilia timonae*. Based on the morphological characteristics, conventional biochemical
tests results and 16S RNA sequence analysis, the diagnosis of *M. timonae* lymphadenitis was made.

The genus *Massilia* belongs to the family *Oxalobacteraceae* (Betaproteobacteria) and, up to now, compromises five species: *M. timonae*, *M. dura*, *M. albidiflava*, *M. plicata* and *M. lutea*.\(^1\) *M. timonae* was first described by La Scola et al. in 1998 based on a single isolate from the blood of an immunocompromised patient with meningoencephalitis.\(^8\) It was classified as a novel bacterium based on its unique phenotypic and genotypic characteristics. The use of 16S rRNA sequence analysis has led to the identification of five additional cases of *M. timonae* infection in humans [See table 1] and resulted in an emended description of the species in 2003.\(^9\)–\(^10\) The organisms are gram-negative medium straight rods. They are motile, predominantly by means of a single polar flagellum, but lateral flagella may also be present. Tests for oxidase and catalase are positive. Growth occurs at 25 and 35°C, on MacConkey agar, and in nutrient broth with 0% NaCl. Growth does not occur at 42°C, on SS agar, or in nutrient broth with 6% NaCl. The species is sensitive to polymyxin B.

The six reported cases in literature demonstrate the wide range of clinical presentation of *M. timonae* infections. The source of infection appears to be unclear in all cases. In two patients with a tentative diagnosis of sepsis, the strain was isolated from the blood. One was isolated from cerebrospinal fluid of a patient with cerebral pseudotumor, one was isolated from wound infection following elective orthopedic surgery, and one was isolated from bone with signs of osteomyelitis. The six reported cases had no common predisposing condition. One patient had a variable immunodeficiency, and one patient had an end-stage renal disease secondary to diabetic nephropathy and hypertension. No underlying medical conditions were known in the other four patients. In our patient, *M. timonae* was isolated from the lymph node and the infection manifested mainly as a generalized lymphadenopathy.

The sources of the infection are unknown in all reported cases. In one patient, abscessed teeth were suspected to be the source, suggesting that *M. timonae* may occur as part of
the transient normal oral flora. In our patient, it is likely that the contamination with this organism occurred in Nigeria, possible while swimming in a lake. Indeed, there is growing body of evidence that *M. timonae* is an environmental organism. Comparison of 16S rRNA gene sequences with closely related species demonstrated that *M. timonae* is located within a cluster of soil-living bacteria. Furthermore, the isolation from soil samples of phenanthrene-degrading, protease-producing and N-acyl homoserine lactone-producing strains related to the genus *Massilia*, as well as four species of the genus Massilia isolated from different soil samples from south-east China, confirms the environmental nature of the species. Recently, other *Massilia* strains have been isolated from air and drinking water.

Malaria is widespread in tropical and subtropical regions, including parts of Africa, Asia and Latin America. It is a mosquito-borne infectious disease caused by a microorganism of the genus *Plasmodium*. For travelers to endemic areas, malaria is a serious health hazard and the disease is often diagnosed on return to the country of residence. Co-infection with malaria and a second pathogen is rarely reported in travelers. This could be explained by the fact that infection with a species of *Plasmodium* is responsible for the major part of fevers in travelers to endemic countries. According to surveillance data of GeoSentinel, the global surveillance network of the International Society of Travel Medicine and the Centers for Disease Control and Prevention, malaria is responsible for 62 percent of systemic febrile illness in travellers returning from sub-Saharan Africa. Additionally, malaria is easier to diagnose than many other infectious diseases and consequently, other infections are not suspected unless patients remain symptomatic after treatment for malaria. Simultaneous infection and malaria has been reported with dengue, leptospirosis, brucellosis, non-typhoidal Salmonella and Q-fever. To our knowledge, this is the first report of *M. timonae* and malaria co-infection in the literature. Because the association of two diseases may result in an atypical clinical presentation, it is not easy to diagnose a co-infection based only upon clinical and epidemiologic characteristics. Therefore, extensive biological testing is crucial to establish the presence of such infections.
of co-infections when other signs and symptoms of residual disease persist after malaria
treatment.

Acknowledgment
The authors wish to thank Anne Willems, PhD. (LM-UGent) for the sequence alignment
with the EMBL Nucleotide Sequence Database.
Table 1: summary of six reported cases in literature of *M. timonae* infection

<table>
<thead>
<tr>
<th>Patient age (yr), sex</th>
<th>Underlying medical condition</th>
<th>Diagnosis</th>
<th>Type of isolate</th>
<th>Described by</th>
</tr>
</thead>
<tbody>
<tr>
<td>25, male</td>
<td>common variable immunodeficiency</td>
<td>meningitis</td>
<td>blood</td>
<td>La Scola et al (8)</td>
</tr>
<tr>
<td>36, male</td>
<td>-</td>
<td>wound infection following elective orthopedic surgery</td>
<td>pus collected intra-operatively</td>
<td>Sintchenko et al (10)</td>
</tr>
<tr>
<td>29, male</td>
<td>-</td>
<td>osteomyelitis</td>
<td>femur</td>
<td>Lindquist et al (9)</td>
</tr>
<tr>
<td>49, female</td>
<td>-</td>
<td>cerebral pseudotumor</td>
<td>cerebrospinal fluid</td>
<td>Lindquist et al (9)</td>
</tr>
<tr>
<td>41, male</td>
<td>end stage renal disease secondary to diabetic nephropathy and hypertension, hemodialysis</td>
<td>sepsis</td>
<td>blood</td>
<td>Lindquist et al (9)</td>
</tr>
<tr>
<td>39, female</td>
<td>-</td>
<td>sepsis</td>
<td>blood</td>
<td>Lindquist et al (9)</td>
</tr>
</tbody>
</table>
References

