COMPARISON OF TWO MOLECULAR METHODS FOR THE RAPID
DIAGNOSIS OF EXTRAPULMONARY TUBERCULOSIS

Running title: Two real-time PCR-based methods in extrapulmonary tuberculosis

Authors:
Manuel Causse (1)
Pilar Ruiz (2)
Juan Bautista Gutiérrez-Aroca (1,2)
Manuel Casal (1,2)*

Institution (1): Microbiology Service, Reina Sofia University Hospital. (2):
Mycobacteria Reference Center, Microbiology Department, Faculty of Medicine,
University of Cordoba. Spain
Address: Avda. Menendez Pidal s/n, 14004, Córdoba, Spain

Corresponding Author: Manuel Casal
Address: Microbiology Service, Reina Sofia University Hospital. Mycobacteria
Reference Center
Avda. Menendez Pidal s/n, 14004, Córdoba, Spain
Telephone: (34) 957010432 Fax: (34) 957010419
e-mail: m1carom@uco.es
Abstract

Application of real-time PCR for the diagnosis of *M. tuberculosis* enables results to be obtained in about two hours. A total of 340 non-respiratory samples were processed using two real-time PCR assay kits: Xpert MTB/RIF® and Cobas TaqMan MTB®. The sensitivity and specificity of the Xpert assay were 95% and 100%, respectively, compared to 78% and 98% for the COBAS assay.
Mycobacterium tuberculosis (MTB) is a major public health concern. Because the bacterium spreads from person to person, effective – and above all rapid – diagnosis is a key objective of world-wide tuberculosis control strategies.

Conventional MTB detection techniques, based on microscopic examination of Ziehl-Neelsen or auramine-stained specimens, are still in widespread use for diagnostic purposes, even though they fail to provide the required sensitivity and specificity. Since the discovery of the polymerase chain reaction in the mid-1980s, a number of molecular techniques have been developed which yield a high degree of sensitivity and, above all, specificity for \textit{M. tuberculosis}.

Although various supports have been tested both for direct specimen-based diagnosis and for identification on culture media, growth in a solid or liquid medium is still considered the reference method for the diagnosis of MTB. In 2009, nevertheless, the Centers for Disease Control And Prevention recommended the use of at least one molecular technique per patient for MTB diagnosis (1).

One of the molecular techniques most widely used for the diagnosis of MTB in respiratory samples is the commercial PCR kit Cobas Amplicor MTB® (Roche Diagnostics®, Indianapolis, USA), which has been available since the 1990s (5, 7). Problems have been reported using this kit, particularly with non-respiratory samples, due to the presence of inhibitor enzymes and contamination (9). Even so, this is still generally considered the molecular reference technique (11, 15).

Although the development of real-time PCR assays has improved the speed, sensitivity and specificity of these molecular techniques, the new real-time methods have still not been widely adopted. A number of non-commercial techniques are available for MTB diagnosis (6, 14).
Cobas TaqMan MTB® (Roche Molecular Systems®, Branchburg NJ, USA) is a real-time PCR-based kit using TaqMan hydrolysis probes and primers that bind to a specific, highly-conserved region of the *Mycobacterium* genome encoding the gene for 16S rRNA. Specimens are prepared manually for the extraction of MTB DNA, and the TaqMan kit is then used for amplification and detection in batches of 10 samples with two controls, in order to optimize reagent use. This technique is routinely used in modern molecular microbiology laboratories for the diagnosis of tuberculosis in respiratory specimens.

The new Xpert MTB/RIF (Cepheid AB®, Bromma, Sweden) assay technique is based on hemi-nested PCR technology, and uses 5 molecular probes to confirm MTB diagnosis; the assay targets the rpoB gene of wild-type *M. tuberculosis* strains. The rt-PCR assay consists of a single-use multichambered cartridge preloaded with the buffers and reagents required for sample processing, amplification and detection. A barcode on each cartridge enables test details to be completed automatically by the software.

This paper reports on a comparison of these two widely-used and intensively-marketed real-time PCR test kits for the diagnosis of MTB in extrapulmonary samples, using a standard culture system as reference method.

A total of 340 consecutive extrapulmonary samples were taken from 289 patients aged between 5 and 83 (mean: 45) between May 2009 and December 2010; males outnumbered females (63.8% vs. 30.9%). Sample sources were as follows: 50 cerebrospinal fluid, 34 pleural fluid, 58 articular fluid, 20 ascitic fluid, 98 biopsies (80 lymph-node, 10 lung, 4 stomach and 4 bone), 54 gastric aspirates, 12 pericardial fluid, and 14 purulent exudates.
Samples deemed non-sterile (all except CSF and pleural fluid) were decontaminated using the N-acetyl-L-cysteine/sodium hydroxide (NALC/NaOH) method. All samples were then centrifuged for 20 minutes at 3000 rpm, stained with auramine and visualized by fluorescent microscopy. They were then inoculated into pyruvate-enriched Löwenstein-Jensen medium and Middlebrook 7H9 broth.

Decontaminated samples were used for the manual extraction of MTB DNA, as required by the Cobas TaqMan MTB assay protocol, and for the preparation of samples using the Xpert MTB/RIF assay kit.

DNA extractions were prepared using the AMPLICOR Respiratory Specimen Preparation Kit, adding 500µl of wash solution to 100µl of sample. The mixture was shaken, then centrifuged at 12,500 x g for 10 minutes. The supernatant was aspirated with a fine-tip pipette and 100µl of lysis reagent was added to the pellet. Tubes were vortexed for 5 seconds, incubated in a dry-heat block at 60ºC for 45 minutes, pulse-centrifuged for 5 seconds and neutralized by the addition of 100µl of neutralizing reagent; finally, tubes were shaken for a further 5 seconds. Sample eluate was used for the rt-PCR Cobas TaqMan MTB assay (in a TaqMan48) once the appropriate master mix had been prepared. The positive and negative controls supplied with the two kits were used.

For the Xpert MTB/RIF test, 1 ml of decontaminated sample was diluted in 2 ml of the sample buffer included in the assay kit. The solution was vortexed for 15 seconds, then left to settle for 15 minutes, vortexing for 15 seconds half way through. A specific volume was collected using the calibrated pipette supplied with the kit, and transferred to the cartridge. The software was then programmed and the cartridge was inserted in the GeneXpert instrument.
The results obtained using these two assay protocols were compared with those of cultures in solid and liquid media, and with AFB smear results.

Statistical analysis was carried out using the EpiInfo 6.04d.

The culture method was used for reference purposes. AFB smear-positive, culture-negative samples were deemed to be culture-positive, for statistical purposes, wherever chart review indicated that a patient with earlier culture-positive specimens had become culture-negative following anti-TB drug therapy, since PCR assays can detect non-viable mycobacteria.

Of the 340 samples, 41 grew in solid or liquid medium, taking a median time of 14 days. Of these, 39 were identified as positive by Xpert MTB/RIF (the two false negatives – one CSF specimen and one biopsy – were both AFB smear-negative).

Thirty-two of the 41 were identified as positive using the Cobas TaqMan MTB assay kit. The nine false negatives (3 biopsies, 2 CSF specimens, 2 gastric aspirates, 1 purulent exudate and 1 pleural fluid specimen) were all AFB smear-negative.

The culture-positive specimens were: 18 biopsies (16 lymph-node and 2 bronchial), 6 cerebrospinal fluid (2 from the same patient), 8 gastric aspirates, 4 pleural fluid, and 5 purulent exudate. AFB smear results were negative in 38 cases, and positive in 3 cases.

For the 299 culture-negative samples, Xpert MTB/RIF yielded no positive PCR result, while the Cobas TaqMan MTB assay identified 5 culture-negative specimens as PCR-positive (2 biopsies, 1 gastric aspirate, 1 CSF fluid and 1 pleural fluid). These possible false positives were attributed to PCR contamination, since there was no sign of *Mycobacterium tuberculosis* infection in the other specimens from these patients tested using conventional TB-detection techniques. IRB approval was granted for a chart review including all five apparently false-positive cases: none of the patients concerned
had received anti-TB therapy, and none exhibited signs or symptoms suggestive of tuberculosis. The findings were thus classed as false positives.

Sensitivity and specificity were 95% and 100%, respectively, for the Xpert MTB/RIF assay kit, compared with 78% and 98% for the Cobas TaqMan MTB kit. Positive predictive values (PPV) and negative predictive values (NPV) were 100% and 99%, respectively, for the Xpert MTB/RIF kit, compared with 86% and 97% for the Cobas TaqMan MTB kit.

A 79.9% match was achieved between the two molecular techniques, with a Kappa index of 0.8 (CI 95%: 0.7-0.9).

Statistical data for performance are shown in Table I.

Xpert MTB/RIF appears to be as effective in non-respiratory samples as it has proved to be in preliminary studies using respiratory samples (3, 4, 10). Results for sensitivity were similar to those reported elsewhere (ranging from 90% in AB smear-negative samples to 99% in AFB smear-positive specimens; overall sensitivity 97%). Findings for specificity (98%) were also similar to those reported by other authors (3, 4, 10).

Specificity and negative predictive values were similar to those recorded for other molecular techniques used in non-respiratory samples, while sensitivity and positive predictive values in our study were considerably better than the 57% and 78%, respectively, reported for the Cobas Amplicor MTB test in non-respiratory samples (12), and closer to the 83-88% sensitivity reported for the GenProbe AMTD assay, also in extrapulmonary samples (2, 8).

In general terms, the Xpert/MTB assay performed better than the Cobas TaqMan MTB; sensitivity, in particular, was substantially greater (87%-100% vs. 64-91%). Statistical
performance data reported elsewhere for the Cobas TaqMan MTB assay are similar to
those indicated here: sensitivity 79-91%, specificity 98%, PPV 73% and NPV 98% (13)
The high sensitivity recorded for the Xpert MTB test in the present study (95%) may be
due to the use of hemi-nested real-time PCR technology rather than simple real-time
PCR. A similar sensitivity of 90.2% has been reported elsewhere for AFB smear-
negative respiratory samples (most of the non-respiratory specimens tested in this study
were also smear-negative) using the Xpert MTB assay kit (4) . Moreover, as other
authors have suggested, the Xpert MTB/RIF assay system appears to be less susceptible
than other PCR-based methods to cross-contamination by amplicons generated by other
methods, that might give rise to false positives (3).
Both the assay techniques tested here were rapid, providing results in less than two
hours, and required little handling by laboratory staff. This is particularly true of the
Xpert MTB/RIF kit, in which extraction, amplification and detection take place within a
single-use multichambered cartridge, thus ensuring minimal sample contamination.
Since manual extraction is recommended when using the Cobas TaqMan MTB assay
kit, there is clearly greater scope for contamination. The Xpert MTB/RIF system allows
sample processing to be carried out on demand, sample by sample, rather than having to
set up a set of samples (usually at least ten samples and two controls) in order not to
waste reagents, as generally happens with the Cobas TaqMan MTB kit.
Both molecular techniques represent an important contribution to the diagnosis of
M.tuberculosis, since they can provide results in a matter of hours, whereas the
reference culture method takes days. Real-time PCR techniques afford greater
sensitivity and specificity and a much-reduced response time, as well as enabling
visualization of amplification curves.
One limitation of these techniques is that, in detecting *M. tuberculosis* DNA, they cannot distinguish between viable and non-viable microorganisms. For that reason, although these essays are semiquantitative, they should not be used for monitoring patient progress or treatment efficacy.

Molecular techniques, of course, are considerably more expensive than traditional culture methods using either liquid or solid medium, but they represent a major contribution to the modern-day detection of tuberculosis.

Acknowledgements:

Supported by the Spanish Ministry of Health and Consumer Affairs, Instituto de Salud Carlos III – ERDF, Spanish Network for Research into Infectious Diseases (REIPI RD06/0008). The authors are grateful to IZASA® Spain for providing the test reagents.
References

Table 1. Statistical results for the performance of the two molecular assay techniques evaluated, relative to reference culture results

<table>
<thead>
<tr>
<th></th>
<th>Xpert MTB/RIF</th>
<th>Cobas TaqMan MTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of samples: 340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity—No./Total (% 95% CI)</td>
<td>39/41 (95, 87-100)</td>
<td>32/41 (78, 64-91)</td>
</tr>
<tr>
<td>Specificity—No./Total (% 95% CI)</td>
<td>299/299 (100, 99-100)</td>
<td>294/299 (98, 96-99)</td>
</tr>
<tr>
<td>PPV—% (95% CI)</td>
<td>100 (98-100)</td>
<td>86 (74-98)</td>
</tr>
<tr>
<td>NPV—% (95% CI)</td>
<td>99 (98-100)</td>
<td>97 (94-99)</td>
</tr>
</tbody>
</table>