Containment of an Outbreak of KPC-3 Carbapenemase-Producing Klebsiella pneumoniae in Italy

Antonella Agodi,¹ Evangelia Voulgari,² Martina Barchitta,¹ Leda Politi,² Vasiliki Koumaki,¹ Nicholas Spanakis,² Loredana Giaquinta,³ Giovanna Valenti,¹ Maria Antonietta Romeo,³ and Athanassios Tsakris²*

Department GF Ingrassia, University of Catania, Catania, Italy, Department of Microbiology, Medical School, University of Athens, Athens, Greece, and Azienda Ospedaliera Cannizzaro, Catania, Italy

Short title: Outbreak of KPC-3-producing K. pneumoniae

*Corresponding author. Mailing address: Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece. Phone: +30 210 7462011 Fax: +30 210 7462210. E-mail: atsakris@med.uoa.gr
During March-May 2009, 24 carbapenem-resistant *Klebsiella pneumoniae* isolates were recovered from 16 patients hospitalized in an Italian intensive care unit (ICU). All isolates contained KPC-3 carbapenemase and belonged to a single PFGE clone of MLST 258. A multimodal infection control program was put into effect and the spread of the KPC-3-producing *K. pneumoniae* clone was ultimately controlled without closing the ICU to new admissions. Reinforced infection control measures and strict monitoring of the staff adherence were necessary for the control of the outbreak.

Key words: class A carbapenemase, outbreak, carbapenem, PFGE, MLST
The class A *Klebsiella pneumoniae* carbapenemases (KPCs), which are predominantly harbored by *Enterobacteriaceae*, have over the past few years exhibited an international dissemination (15).

There are currently 10 recognized KPC types (KP-2 to KPC-11) (http://www.lahey.org/studies) of which KPC-2 and KPC-3 are the most commonly detected variants (7, 15). The KPC-2 appears to be more predominant worldwide with outbreaks arising from the USA but also from Europe and China (7, 16, 18). KPC-3 is mainly detected in USA, Latin America and Israel (3, 7, 14, 15), while reports from Europe still remain rare, mainly involving patients with a history of previous hospitalization in these endemic regions (2, 20, 24). In Italy, KPC-2- and KPC-3-producing *K. pneumoniae* strains have already introduced in hospital units (8, 9, 13). We report the emergence of a KPC-3-producing *K. pneumoniae* clone in an Italian intensive care unit (ICU) and the containment of this outbreak.

The study was conducted in the 12-bed ICU at the Cannizzaro Hospital, Catania, Italy, a 500-bed acute care hospital. During March 2009-May 2009 clinical and screening specimens (oropharyngeal, rectal, nasal, and axillary swabs) were collected to detect *K. pneumoniae* isolates exhibiting resistance to at least one of the carbapenems (imipenem, meropenem or ertapenem) (4).

Screening cultures were collected from each patient on the day of admission using CLED agar plates. Standard definitions of carriage, colonization and infections were used (1). Particularly, carriers were considered patients with positive screening cultures in the absence of, or before isolation of, positive clinical specimens. Patients with positive clinical specimens were considered to be colonized, in case of a lack of clinical data confirming infection.

In total, 24 carbapenem-resistant *K. pneumoniae* isolates were recovered from clinical and screening specimens of 16 patients hospitalized in the ICU. Table 1 presents the characteristics of the patients and their *K. pneumoniae* isolates. Most of the patients (13 of 16; 81.3 %) had evidence of clinical infection due to KPC-producing *K. pneumoniae*. The crude mortality rate was 37.5 %.

The index carbapenem-resistant *K. pneumoniae* was recovered from blood culture of a patient who was transferred to the unit from the neurosurgery department 23 days before the isolation. It was
this initial detection of a carbapenem-resistant *K. pneumoniae* isolate in the ICU, which alerted us to the possibility of a carbapenem-resistant clone being introduced into our hospital. It is of note that upon ICU admission, screening cultures were taken from this patient and were negative for carbapenemase-producing isolates.

Agar dilution susceptibility testing (4) was performed on the 24 isolates. MICs for imipenem ranging from 2 to >32 µg/ml, for meropenem from 2 to >32 µg/ml, while all isolates were highly-resistant to ertapenem with MICs > 32 µg/ml. Furthermore, they were resistant to several β-lactams including aztreonam, amikacin (MICs of 64 to 128 µg/ml), trimethoprim-sulfamethoxazole (MIC >32 µg/ml), and ciprofloxacin (MIC >32 µg/ml). Antimicrobials that demonstrated in-vitro activity were gentamicin, tigecycline and colistin with MICs of ≤ 4 µg/ml, ≤ 2 µg/ml and ≤ 2 µg/ml, respectively, with the exception of index isolate K1, which was resistant to colistin (MIC of 32 µg/ml).

Phenotypic testing using the boronic acid potentiation disk test with meropenem (21) was indicative of the production of a KPC carbapenemase in all isolates, while the combined-disk test with imipenem and EDTA was negative for metallo-β-lactamase production. Also, the modified ESBL CLSI confirmatory test (22) was negative for ESBL production in all cases.

The isolates were screened for β-lactamase genes by PCR and sequencing using primers for the detection of MBL (10, 11), KPC (22), ESBL (12, 23) and plasmidic AmpC genes (17). In accordance with phenotypic results, molecular testing confirmed the presence of *bla*KPC-3 gene in all cases. Furthermore, all isolates contained the *bla*TEM-1 gene and isolates K2 and K3, both deriving from a single patient’s specimens, were positive for *bla*OXA-1 gene. Conjugation experiments along with plasmid analysis failed to demonstrate transfer of carbapenem resistance to all isolates.

Pulsed field gel electrophoresis (PFGE) of the *XbaI* digested genomic DNA was performed and banding patterns were compared visually (19). PFGE analysis of the 24 *K. pneumoniae* isolates indicated the dissemination of clonally related KPC-3-positive isolates, which belonged to a single clone designated as type E. It should be noted that this clonal type was distinctly different from the...
epidemic clone type A, preexisting in our unit, which did not exhibit resistance to carbapenems. MLST was performed on representative KPC-3-producing isolates according to the protocol described on the website (http://www.pasteur.fr/recherche/genopole/PF8/mlst/Kpneumoniae.html) and results were compared to the international K. pneumoniae database (6). MLST showed that isolates of clonal type E shared the same MLST sequence type designated as ST258.

Two epidemic curves were plotted to give a visual representation of the trend of K. pneumoniae colonization and infection events in the ICU, due to the carbapenem-resistant clone and to the previously circulated carbapenem-susceptible clone, respectively. Epidemic curves were used to provide information on the outbreak’s pattern of spread, magnitude and time trend.

Infection control measures were implemented following the detection of the index carbapenem-resistant K. pneumoniae isolate (Figure 1). The ICU environment was cleaned with a neutral detergent, respiratory equipment was disinfected and instructions regarding hand hygiene were given. Regardless of these initial measures the outbreak continued to evolve with more isolates being detected. The epidemic curves (Figure 1) and results of molecular typing suggested the occurrence of a propagated or progressive source mode of epidemic transmission, reflective of transmission within the healthcare facility, likely caused by person-to-person contact, although environmental or device exposure may have played a role. Infection control measures were therefore reinforced (Figure 1). Colonized or infected patients were spatially segregated, they received care from a single nurse and the use of disposable gloves and aprons was strictly implemented for all members of staff. Compliance with hand hygiene was monitored, as were contact isolation measures and strict adherence of the personnel to environmental cleaning.

Meetings between ICU staff and infection control teams were deemed necessary and were held on a weekly basis. The aim of these meetings was not only to provide timely and precise input on the number of new cases detected but also to monitor the implementation of the measures taken and optimize their efficacy. The outbreak was ultimately controlled within a four month period of time,
with no novel carbapenem-resistant isolates being detected thereafter. ICU closure to new
admissions was thus averted.

In European regions the KPC-3 variant has been mostly detected from imported cases (2, 20, 24). In this study, the emergence of a KPC-3 producing *K. pneumoniae* clone in a European hospital is described. All isolates were found to belong to a single pulsotype, which seemingly replaced the previously established carbapenem-susceptible epidemic pulsotype of the hospital ICU rather than rapidly diffused the *bla*_{KPC-3} gene within the preexisting clone.

The index case isolate was retrieved from a patient with no history of a recent journey to countries where KPC-3 producers are widely spread and the screening cultures during ICU admission were negative for KPC production. A distinct epidemiological link as to how this isolate was introduced into the unit was not identified in the current survey. This is a possible indication of the circulation of such KPC-producing isolates within the hospital environment before causing clinical infections (5). KPC-type enzymes are known for their potential for rapid dissemination among different bacterial species, which has been attributed to the fact that these genes are usually located on transferable broad host range plasmids which are associated with transposons and IS elements (15). Given the potential of KPC producers to rapidly disseminate and the difficulties involved in the containment an outbreak due to such isolates, a multimodal infection control program was put into effect promptly after the identification of the first carbapenem-resistant isolate, in order to control the spread of the *K. pneumoniae* clone without closing the ICU to new admissions. Despite active surveillance and initial contact precautions the outbreak continued to escalate. Reinforced infection control measures and strict monitoring of the staff adherence were necessary for the effective control of the outbreak within a four month period of time. Thus we were able to prevent the closure of the ICU to new admissions.

The systematic description of the above measures and active surveillance is of importance due to the significant increase of KPC-producing pathogens in several regions. Such epidemics are also worrisome because of the potential for further dissemination of these KPC-3 possessing clonal
isolates within the Italian and consequently the European region. This dissemination has been already described among sporadic cases of KPC-producing *K. pneumoniae* introduced to Switzerland from Italy (2). The need for accurate and rapid phenotypic methods is mandatory in order to detect such KPC-positive pathogens and timely implement the appropriate infection control measures.

REFERENCES

8

Chaudhary, M. Doumith, C. G. Giske, S. Irfan, P. Krishnan, A. V. Kumar, S. Maharjan, S.

17. Pérez-Pérez F. J. and N. D. Hanson. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in

Maniatis, A. Tsakris, and D. Sofianou. 2009. Clonal spread of KPC-2 carbapenemase-producing

Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel

20. Tommaso, G. and M. M. D’Andrea. 2009. Emergence in Italy of Klebsiella pneumoniae sequence type

Pournaras, and D. Sofianou. 2009. Evaluation of boronic acid disk tests for differentiating KPC-

22. Tsakris, A., A. Poulou, K. Themeli-Digalaki, E. Voulgari, T. Pittaras, D. Sofianou, S. Pournaras,
and D. Petropoulou. 2009. Use of boronic acid disk tests to detect extended-spectrum β-lactamases in
3426.

23. Tzelepi, E., C. Magana, E. Platouska, D. Sofianou, O. Paniara, N. J. Legakis, A. C. Vatopoulos, and
L. S. Tzouvelekis. 2003. Extended-spectrum β-lactamase types in Klebsiella pneumoniae and

TABLE 1. Characteristics of patients and KPC-3-producing *K. pneumoniae* isolates in the ICU of the Cannizzaro Hospital.

<table>
<thead>
<tr>
<th>Patient and isolate</th>
<th>Type of Admission</th>
<th>Date sample obtained (month/date)</th>
<th>Type of sample</th>
<th>Pattern of acquisition</th>
<th>Discharge status from the ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1 K1</td>
<td>Unscheduled</td>
<td>3/11</td>
<td>blood from CVC</td>
<td>CRF</td>
<td>Death</td>
</tr>
<tr>
<td>Patient 2 K2 K3</td>
<td>Medical</td>
<td>3/16</td>
<td>blood sputum</td>
<td>infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 3 K4</td>
<td>Unscheduled</td>
<td>3/23</td>
<td>tonsillar swab</td>
<td>carriage</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 4 K5 K6 K7 K8 K9</td>
<td>Medical</td>
<td>3/24 3/27 3/29 3/30</td>
<td>arterial catheter tip urine blood sputum blood from CVC</td>
<td>colonization CRI colonization -</td>
<td>Death</td>
</tr>
<tr>
<td>Patient 5 K10</td>
<td>Medical</td>
<td>4/4</td>
<td>urine</td>
<td>colonization</td>
<td>Death</td>
</tr>
<tr>
<td>Patient 6 K11</td>
<td>Medical</td>
<td>4/14</td>
<td>blood</td>
<td>infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 7 K12</td>
<td>Scheduled</td>
<td>4/14</td>
<td>peritoneal fluid</td>
<td>infection</td>
<td>Death</td>
</tr>
<tr>
<td>Patient 8 K13 K14</td>
<td>Medical</td>
<td>4/27 4/27</td>
<td>tonsillar swab sputum</td>
<td>carriage infection</td>
<td>Death</td>
</tr>
<tr>
<td>Patient 9 K15</td>
<td>Medical</td>
<td>4/27</td>
<td>tonsillar swab sputum</td>
<td>carriage infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 10 K16</td>
<td>Medical</td>
<td>4/28</td>
<td>sputum</td>
<td>infection</td>
<td>Death</td>
</tr>
<tr>
<td>Patient 11 K17</td>
<td>Medical</td>
<td>5/9</td>
<td>urine</td>
<td>infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 12 K18</td>
<td>Medical</td>
<td>5/11</td>
<td>blood</td>
<td>infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 13 K19</td>
<td>Scheduled</td>
<td>5/12</td>
<td>sputum</td>
<td>infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 14 K20</td>
<td>Medical</td>
<td>5/12</td>
<td>sputum</td>
<td>infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 15 K21 K22</td>
<td>Medical</td>
<td>5/16 5/18</td>
<td>arterial catheter tip urine sputum</td>
<td>infection infection</td>
<td>Alive</td>
</tr>
<tr>
<td>Patient 16 K23 K24</td>
<td>Medical</td>
<td>5/24 5/25</td>
<td>urine sputum</td>
<td>infection</td>
<td>Alive</td>
</tr>
</tbody>
</table>

FIG 1. Epidemic curves of the carbapenem-resistant clone (PFGE type E) and of the carbapenem-susceptible clone (PFGE type A) in the ICU of the Cannizzaro Hospital. Isolates of both clonal types are represented according to their weekly distribution over a 9 month period of time. Arrows designate when the first and second rounds of infection control interventions were begun.