Analysis of a *Streptococcus pyogenes* Puerperal Sepsis Cluster using Whole-Genome Sequencing

Nouri L. Ben Zakour1,*, Carola Venturini1,*, Scott A. Beatson1, Mark J. Walker1,†

1School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia

* These authors contributed equally to this work
† Corresponding author

Running Title: Puerperal sepsis cluster analysis

Manuscript word count: 1867 words

Abstract word count: 233 words

Corresponding author: Mark J. Walker: Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia. Tel: (61) 7-3346-1623. Fax: (61) 7-3365-4273. E-mail: mark.walker@uq.edu.au.
Abstract

Between June and November 2010, a concerning rise in the number of cases of puerperal sepsis, a post-partum pelvic bacterial infection contracted by women after childbirth, was observed in the New South Wales hospital system. Group A streptococci (GAS; *Streptococcus pyogenes*) isolates PS001-011 were recovered from nine patients. Pulse-field gel electrophoresis and *emm* sequence typing revealed GAS of *emm*1.40, *emm*75.0, *emm*77.0, *emm*89.0, and *emm*89.9 were each recovered from a single patient, ruling out a single source of infection. However, *emm*28.8 GAS were recovered from four different patients. To investigate the relatedness of these *emm*28 isolates, whole-genome sequencing was undertaken and the genome sequences compared to that of the *emm*28.4 reference strain MGAS6180. A total of 186 single nucleotide polymorphisms were identified for which the phylogenetic reconstruction indicated a outbreak of polyclonal nature. While two isolates collected from different hospitals were not closely related, isolates from two puerperal sepsis patients from the same hospital were indistinguishable, suggesting patient-to-patient transmission or infection from a common source. The results of this study indicate that traditional typing protocols, such as pulsed-field gel electrophoresis, may not be sensitive enough to allow fine epidemiological discrimination of closely related bacterial isolates. Whole-genome sequencing presents a valid alternative that allows for accurate fine scale epidemiological investigation of bacterial infectious disease.
Introduction

Puerperal sepsis (PS) is a post-partum pelvic bacterial infection contracted by women after vaginal or abdominal delivery. The condition is identified by fever one day postpartum, although more rapid and severe infection leading to death may occur. Puerperal sepsis has been recognized as a major contributor to maternal and newborn morbidity since ancient times. The introduction of lying-in hospitals in the 1600s triggered a steep rise in puerperal sepsis cases and deaths, which remained unchanged until the late 1800s. Epidemics of PS were common in the 1600s to 1800s, the by-product of hospital practices in the days before infection control and antimicrobial therapy (12).

Nosocomial bacterial infections are a worldwide problem requiring constant and targeted surveillance. Antiseptic control measures must be implemented to minimize the occurrence and spread of such infections, a notion only accepted relatively recently in the history of health care (12, 25, 27, 33). While death was the outcome for most infected mothers in the pre-antibiotic era, PS deaths are less common today, with most instances occurring in developing countries (17). The WHO ranks puerperal sepsis as the 6th highest cause of maternal mortality worldwide (34). Risk factors that contribute to infection include breakdown of hygiene standards during delivery and post-delivery care, prolonged manipulation of patients during delivery, prolonged labor or rupture of membranes, as well as poor sanitary conditions and inadequate services within health facilities (23).

Group A β-haemolytic Streptococcus (Streptococcus pyogenes or GAS) is the infectious cause of puerperal fever (13). S. pyogenes is a strictly human pathogen usually found in the skin and throat, and less frequently in the rectum and the female genital tract (19). GAS of serotype M28 has been associated with recent PS outbreaks (8, 14, 29). Pulsed-field gel
electrophoresis (PFGE) and random amplified polymorphic DNA analysis have been used to
determine the clonal relatedness of strains isolated in clusters of PS infection (10, 24, 29).
However, advances in whole-genome sequencing technology provide an opportunity to
overcome the limitations inherent in these techniques, offering highly sensitive and
unequivocal sequence comparison at the single nucleotide level (3, 9, 28).

Case Report

In Australia, deaths due to GAS puerperal sepsis are rare but outbreaks of infection still occur
(26). In New South Wales, nine cases of GAS puerperal sepsis were identified between June
and November 2010 from five different hospitals in the greater Sydney area. The mothers
presented high temperatures on the day after childbirth, and all made a full recovery upon
treatment. Given the close temporal distribution of multiple PS cases, an investigation of this
potential outbreak was initiated. A total of 11 GAS isolates were recovered from vaginal
swabs, urine and blood samples, and subjected to molecular epidemiological characterization
(Table 1).

Materials and Methods

Isolation and typing

The 11 GAS isolates were *emm* typed by sequencing of the *emm* gene using the PCR
amplification method of Beall *et al.* (4). Bidirectional Sanger sequencing was performed and
consensus sequences were submitted to the Centers for Disease Control and Prevention
(http://www.cdc.gov/ncidod/biotech/strep/M-ProteinGene_typing.htm). Five isolates that
were found to be *emm*28.8 were further characterized by PFGE (refer to Supplemental
Material for details of PFGE method).
Whole-genome sequencing and comparative analysis

To investigate the genetic diversity of the emm28.8 isolates within the infection cluster, whole-genome sequencing was carried out using an Illumina HiSeq 2000 (Illumina, San Diego, CA). The previously sequenced emm28.4 strain S. pyogenes MGAS6180 (15) was also sequenced under the same conditions to provide an internal reference for subsequent comparative analyses. For each isolate, 1 million read pairs were mapped to the S. pyogenes MGAS6180 reference genome (GenBank CP000056) using BWA (21). Putative single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were called using bcftools (22) with settings that retained only high quality variants. Whole-genome phylogenetic reconstruction using maximum-likelihood was carried out with 186 high quality SNPs. To identify any large-scale differences, such as phage or genomic islands, we carried out a de novo assembly of each genome using Velvet (35). This was done using the 1 million pair reads subsets previously selected for the read-mapping step. Automated annotation was performed using the RAST annotation server (2) and subsequent genomic comparisons were undertaken using a combination of the software Mauve (11), Artemis (7) and BRIG (1). Further details of the DNA preparation, sequencing, phylogenetic and comparative genome analysis methods are available in the Supplemental Material.

Results

Initial typing of GAS puerperal sepsis isolates

To characterize the relationship between the 11 GAS isolates in this cluster we initially employed emm PCR typing and PFGE. Isolates with differing emm types (emm1.40, emm75.0, emm77.0, emm89.0, and emm89.9) were each recovered from single patients (Table 1), ruling out a single source of infection. The five remaining emm28.8 isolates were further characterized by PFGE. Four of five emm28.8 isolates presented an identical PFGE...
Whole-genome sequencing to identify the relationship between emm28.8 isolates

For each GAS emm28, isolate between 4.6 and 15.8 million sequence read pairs were obtained, corresponding to 920 and 3160 megabase-pairs of sequence data, respectively. As this amount of data exceeds the required sequence coverage, we carried out subsequent analysis steps using 1 million read pairs randomly sampled from each dataset (approximately 100x read coverage relative to the reference emm28.4 strain S. pyogenes MGAS6180 (15)). Reads were mapped to the reference genome (Fig. 2). High quality variants, including 186 single nucleotide polymorphisms (SNPs) and 33 small insertions/deletions (indels), were identified from the read-mapping data. Out of a total of 186 SNPs identified when compared to MGAS6180, only 72 are common to all emm28.8 isolates, ruling out the scenario of the emm28.8 strains having diverged from a recent common ancestor and spread from one hospital to another (Table S1).

Three isolates are virtually identical according to our SNP analysis, with only two SNPs identified in PS001 compared to PS005 and PS006. To rule out the possibility of an error in sequencing or read-mapping, the nucleotide sequence covering these SNPs was independently confirmed by Sanger sequencing. Notably, PS001, PS005 and PS006 were isolated from two patients from the same hospital within a two day window. In contrast, the emm28.8 GAS strains PS007 and PS008 were isolated from different hospitals, three and five months after PS001, PS005 and PS006, respectively. Whereas PS007 and PS008 harbor a similar number of SNPs compared to MGAS6180 (107 and 119 SNPs), these isolates have a substantially larger number of unique SNPs (32 and 47 SNPs) and therefore are not clonal.
The relationships between all *emm*28.8 isolates are best visualized as a phylogeny of the *emm*28.8 GAS strains based on the core 186 SNPs relative to the reference MGAS6180 (Fig. 3; Supplemental Methods). Indel analysis also indicates that PS001, PS005 and PS006 are closely related in comparison to the other *emm* 28.8 GAS strains (Table S2). Thus, we hypothesize that PS001, PS005 and PS006 are clonal and are likely the result of either patient-to-patient or staff-to-patient mediated transmission.

Identification of mobile genetic elements

Read-mapping visualization revealed that all M28-specific islands previously identified in MGAS6180, with the exception of the prophage 6180.2, were also present in the five PS *emm*28.8 isolates. Of note, this includes the 6180.RD2 region, which is known to carry several virulence factors and surface proteins, including the R28 protein that may play a role in vaginal carriage (15, 30, 32) (Fig. 2).

Identifying strain-specific accessory genome and macrovariations, such as new mobile genetic elements, provides insight into horizontal gene transfer and evolution of GAS (5, 31). In order to identify regions that are not found in the reference genome, we produced a *de novo* assembly for each isolate. The whole-genome comparison of *de novo* assemblies also revealed the presence of two putative mobile genetic elements in PS008 (Fig. 2). The novel 37 kb prophage φPS008 does not share significant similarity to any previously described GAS prophage and does not carry any characterized virulence factors. The 41 kb integrative and conjugative element ICESpPS008 is nearly identical to ICESp2905 (6), although it harbors neither antibiotic resistance *erm*(TR) nor *tet*(O) genes, and instead carries putative virulence factors, including genes encoding for multidrug efflux proteins and a lipoprotein. Of note, ICESpPS008 is integrated at the 5’ end of the RNA uracil-methyltransferase *rum*
Discussion

Despite the persistence of puerperal fever as a primary cause of maternal death, most of the predisposing factors leading to this disease are preventable. Control of PS incidence depends on the implementation of established techniques, including high standards of hygiene and cleanliness, strict adherence to asepsis, as well as preventive antibiotic therapy (17, 18, 33). In this study we have demonstrated, using whole-genome sequence analysis, that in-ward transmission of infection may still be implicated in the spread of disease even within hospitals where hygiene standards are of a high level.

Whole-genome sequencing and SNP analysis have proven useful in discriminating between closely related isolates and allow analysis of the epidemiology of small infection clusters (9, 16, 20). This study shows that the 11 GAS strains recovered from a temporal cluster of PS infection in NSW hospitals did not represent a single clone and that most of the strains isolated from different hospitals were non-clonal. However, three strains isolated in the same hospital from two different patients were found to be clonal. PFGE was unable to discriminate these GAS emm28.8 isolates, whereas high resolution SNP analysis allowed the deduction of fine-scale epidemiological links.

Analysis of the genome sequence of the five emm28 strains demonstrates variation in the accessory components of the genome when compared to the reference MGAS6180 strain. Although all emm28.8 strains carry the RD2 region of MGAS6180, implicated in the development of PS (15, 32), they lack the 6180.2 phage of MGAS6180 that encodes two streptococcal virulence factors, the superantigen SpeK and the phospholipase SlaA. However,
strain PS008 has acquired two novel mobile genetic elements, the phage ϕPS008 and the integrative chromosomal element ICESpPS008, carrying uncharacterized putative virulence factors. It has been established that horizontal gene transfer provides the main means for the evolution of new invasive clones via rearrangement of GAS genomes (5). Prophage sequences make up 10% percent of the GAS genome and account for most of the gene variation among different M types (5). Assessing the impact of such genome variation on the ability of these strains to cause disease will likely allow better understanding of the virulence potential of $emm28$ GAS.

Rapid, high-resolution genetic analysis of bacterial isolates is important for determining the epidemiology of hospital infection clusters. This study demonstrates the utility of whole-genome sequencing technology in the context of bacterial infection and transmission. Platforms for rapid whole-genome typing of microbial pathogens are becoming invaluable tools in epidemiological investigations (9). While there are still some limitations to the full integration of whole-genome sequencing as part of a standard typing pipeline in clinical settings, such as data analysis and cost, current efforts in implementing automated data analysis pipelines will allow whole-genome sequencing to be widely used as a routine diagnostic tool. Ongoing advances in sequencing technology, such as the Illumina platform, allow rapid sequencing of whole bacterial genomes with high coverage, and will soon obviating the limitations of PFGE and other traditional epidemiological tools. This study provides an exemplar for real-time surveillance and management of suspected infection outbreaks.
Acknowledgements

The authors gratefully acknowledge the technical assistance of Mitchell Stanton-Cook and Nabil Alikhan. This work is supported by the National Health and Medical Research Council of Australia (511224, 573401 and 565526). S A Beatson is the recipient of an Australian Research Council Australian Research Fellowship (DP0881347). M J Walker is the recipient of a National Health and Medical Research Council of Australia Principal Research Fellowship (631386). The sponsors of this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The authors declare that they have no competing interests.
References

33. WHO. 2005. WHO guidelines on hand hygiene in health care (advanced draft):
summary. Clean hands are safe hands. World Alliance for Patient safety. World health
Oragnisation 2005.

using de Bruijn graphs. Genome Res.18:821-829.
Tables

Table 1. GAS strains used in this study.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Hospital of origin</th>
<th>Date of collection</th>
<th>Site of specimen</th>
<th>Patient</th>
<th>emm type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGAS6180</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>emm 28.4</td>
<td>CP000056 (15)</td>
</tr>
<tr>
<td>PS001</td>
<td>A</td>
<td>26/06/10</td>
<td>vaginal swab</td>
<td>1</td>
<td>emm 28.8</td>
<td>this study</td>
</tr>
<tr>
<td>PS002</td>
<td>A</td>
<td>26/06/10</td>
<td>vaginal swab</td>
<td>2</td>
<td>emm 1.40</td>
<td>this study</td>
</tr>
<tr>
<td>PS003</td>
<td>A</td>
<td>5/07/10</td>
<td>vaginal swab</td>
<td>3</td>
<td>emm 77.0</td>
<td>this study</td>
</tr>
<tr>
<td>PS004</td>
<td>A</td>
<td>6/07/10</td>
<td>vaginal swab</td>
<td>3</td>
<td>emm 77.0</td>
<td>this study</td>
</tr>
<tr>
<td>PS005</td>
<td>A</td>
<td>27/06/10</td>
<td>urine</td>
<td>4</td>
<td>emm 28.8</td>
<td>this study</td>
</tr>
<tr>
<td>PS006</td>
<td>A</td>
<td>26/06/10</td>
<td>urine</td>
<td>1</td>
<td>emm 28.8</td>
<td>this study</td>
</tr>
<tr>
<td>PS007</td>
<td>B</td>
<td>21/09/10</td>
<td>blood</td>
<td>5</td>
<td>emm 28.8</td>
<td>this study</td>
</tr>
<tr>
<td>PS008</td>
<td>C</td>
<td>11/11/10</td>
<td>vaginal swab</td>
<td>6</td>
<td>emm 28.8</td>
<td>this study</td>
</tr>
<tr>
<td>PS009</td>
<td>C</td>
<td>7/11/10</td>
<td>vaginal swab</td>
<td>7</td>
<td>emm 89.0</td>
<td>this study</td>
</tr>
<tr>
<td>PS010</td>
<td>D</td>
<td>20/11/10</td>
<td>blood</td>
<td>8</td>
<td>emm 75.0</td>
<td>this study</td>
</tr>
<tr>
<td>PS011</td>
<td>C</td>
<td>25/11/10</td>
<td>vaginal swab</td>
<td>9</td>
<td>emm 89.9</td>
<td>this study</td>
</tr>
</tbody>
</table>

NA, not applicable
Figures

Figure 1. PFGE profiles of the five *emm28.8* isolates examined in this study, using *SmaI* on the left of the marker lane (Mk), and *AscI* on the right.

Figure 2. Visualization of the reads selected for each strain mapped onto the *S. pyogenes* MGAS6180 reference genome. The innermost circles represent the GC content (black), GC skew (purple/green) and rRNA operons of MGAS6180 (pink boxes). BRIG (1) shows the distribution of the number of reads for each individual strain mapped onto the central reference using a window size of 500, arranged inner to outer colored circles as follows: resequenced reference MGAS6180 (pink), PS001 (yellow), PS006 (orange), PS005 (red), PS007 (maroon) and PS008 (purple) with additional strain-specific regions of difference (RODs) (φPS008 and ICESpPS008) represented as insertions. The outermost circle represents previously reported RODs in MGAS6180, namely, prophage elements 6180.1 and 6180.2, prophage remnants 6180.3 and 6180.4, and RODs 6180.RD1 and 6180.RD2 (15) (black).

Figure 3. Phylogeny of the *emm28* strains based on SNPs. An unrooted maximum likelihood tree including the five *emm28.8* strains and the reference strain MGAS6180, was constructed using the 172 core SNPs out of the 186 total SNPs identified when compared to MGAS6180, which were obtained by excluding 14 SNPs associated with recombination events as described in the Supplemental Methods section. Numbers on internal nodes represent percentage of replicated trees (>50%) in which the associated samples clustered together in the bootstrap test (based on 1,000 replicates). The scale bar represents the number of base substitutions per site.