1 NON-CLINICAL SELECTION CRITERIA FOR MAXIMIZING THE YIELD OF
2 NUCLEIC ACID AMPLIFICATION TESTS IN TUBERCULOSIS DIAGNOSIS
3
4 Running title: SELECTION CRITERIA FOR TB NAA TEST
5
6 Linda L Han1#, Paul Elvin1, and John Bernardo2
7
8 1Massachusetts Department of Public Health Bureau of Laboratory Sciences, 305 South
9 Street, Jamaica Plain, MA 02130
10 2Massachusetts Department of Public Health TB Prevention and Control Program,
11 305 South Street, Jamaica Plain, MA 02130
12
13 Corresponding author: Linda Han, linda.han@state.ma.us
14
15
ABSTRACT

In spite of the excellent performance of rapid tuberculosis (TB) nucleic acid amplification (NAA) tests and the clear benefits of immediate diagnosis of TB disease, NAA tests frequently are not used in the diagnosis of pulmonary TB cases, particularly TB cases with smear-negative sputa. Public health laboratories primarily perform TB NAA tests only on a targeted subset of specimens, usually including those that are smear-positive and those for which a clinician has specifically requested NAA testing. As an alternative to targeted testing, some laboratories use TB NAA tests universally for all respiratory specimens, though this practice can be prohibitively costly, and can be associated with an increased frequency of false positive results due to testing of lower-risk patients. We propose a strategy for identifying individuals for NAA testing on the basis of non-clinical risk criteria that are routinely provided on the test requisition form, such as type of health care facility from which the specimen is received, and patient age group. Use of this strategy at the Massachusetts Department of Public Health Laboratory would allow for NAA test identification of approximately 54 (74%) of 72 culture-positive pulmonary TB cases over a one-year period, while requiring NAA testing for only 933 (17%) of 5469 individuals submitting respiratory specimens. We demonstrate that use of non-clinical NAA test selection criteria is an effective strategy for maximizing the number of TB cases that can be rapidly identified while minimizing the number of specimens that must be tested.

INTRODUCTION
Early diagnosis and treatment of tuberculosis (TB) improves patient outcomes and reduces the risk of disease transmission. Nucleic acid amplification (NAA) tests can allow for identification of TB on the same day that the specimen is received, two weeks earlier than is usually achieved by conventional culture methods (5). In 2009, the US Centers for Disease Control and Prevention issued updated guidelines for the use of TB NAA testing, recommending that “NAA testing should be performed on at least one respiratory specimen from each patient with signs and symptoms of pulmonary TB for whom a diagnosis of TB is being considered but has not yet been established, and for whom the test result would alter case management of TB control activities (2).” Although TB NAA testing has assumed an increasingly important role in clinical and public health settings, it can be costly and labor-intensive. As a result, most US public health laboratories offer testing for only a subset of respiratory specimens, usually limiting testing to smear-positive specimens, specimens for which a clinician requests testing, or both. Among 45 US public health laboratories for which data were available in 2009, 36% of culture-positive TB cases were identified within 48 hours of specimen receipt, falling well below the Healthy People 2020 goal of diagnosing 75% of TB cases within 48 hours (4).

The Massachusetts Department of Public Health Laboratory currently performs NAA testing on the first smear-positive respiratory specimen from each new patient, and on any respiratory specimen as requested by the clinician. Although more than 50% of pulmonary TB cases confirmed by culture at the laboratory are smear-negative, only a small percentage of these smear-negative specimens are flagged by clinicians for NAA...
testing. As such, targeting high-risk smear-negative specimens for NAA testing could result in substantial increases in the frequency of early detection of TB cases, in spite of the relatively low sensitivity of NAA tests among smear-negative specimens. In early 2010, we launched a campaign to inform clinicians of the availability of the TB NAA test and of the indications for ordering the test at our laboratory. In spite of these efforts, the percentage of smear-negative TB-culture-positive specimens for which NAA testing was requested decreased between 2009 and 2011, from 12.2% (7/57) to 7.0% (3/43).

As such, we considered whether it might be possible to identify specimens for NAA testing on the basis of non-clinical risk indicators that are routinely collected on the laboratory test requisition form, without reliance on clinician request. In this study, we examine one year of laboratory testing data with the objectives of (1) describing and defining the challenge associated with identifying high-risk smear-negative TB cases for targeted NAA testing, and (2) demonstrating the feasibility and potential utility of a strategy for identifying high-risk candidate specimens for NAA testing through the use of non-clinical risk factors that are available to laboratories on their test requisitions.

MATERIALS AND METHODS

All laboratory testing was performed at the Massachusetts Department of Public Health Laboratory, including TB NAA test with the FDA-approved Genprobe Amplified Mycobacterium Tuberculosis Direct (MTD) test (Gen-Probe Inc., San Diego, CA). The laboratory receives primary specimens and mycobacterial reference isolates from a range of provider types, including acute care hospitals, primary care and TB clinics, reference
laboratories, correctional facilities, and local boards of health. Data for specimens collected between July 1, 2010 and June 30, 2011 were extracted from the Mycobacteriology Laboratory information management system, and analyzed with SAS statistical package, version 9.2 (SAS Institute Inc., Cary, NC, USA). Only specimens identified as sputum, bronchial specimens, or tracheal aspirates were included. Only primary patient specimens from Massachusetts providers were included. Reference isolates were excluded.

We defined an individual as being smear-positive if any specimen collected within one week of the first specimen was smear-positive. An individual was considered to be smear-negative if all specimens collected within one week of the first specimen were smear-negative. Individuals who produced a smear-positive specimen after more than one week of producing only smear-negative specimens were considered to be smear-negative. We chose these definitions with the assumption that initial smear results are most relevant in the timely identification of candidates for NAA testing. Of note, only 34% of individuals tested during the study period submitted more than one specimen.

We considered several non-clinical selection criteria for identifying high-risk smear-negative specimens as candidates for NAA testing, focusing on categories that included high numbers of culture-confirmed TB cases relative to the total number of specimens tested. We then considered sets of selection criteria, adding each new criterion one at a time while examining the incremental and cumulative effects, in terms of number of culture-confirmed TB cases identified and number of specimens to be tested. Individuals
meeting more than one criterion were only associated with the first criterion met. Because smear-positive specimens are already being targeted for NAA testing, most of the TB cases identified by additional selection criteria would be smear-negative. As such, the number of additional TB cases identified by NAA test with each additional selection criterion was calculated by multiplying the number of culture-positive TB cases in each category by 72%, the sensitivity of the MTD test among smear-negative specimens as stated by the test manufacturer.

All analyses were based on results of routine laboratory testing protocols. All primary respiratory specimens were decontaminated and concentrated, smeared for acid-fast bacilli microscopy, and inoculated onto solid and liquid culture media, as previously described (6). Mycobacterial isolates were identified by DNA probes (AccuProbe, GenProbe Inc., San Diego, CA) or by biochemical testing. The first smear-positive respiratory specimen collected from each patient was subjected to MTD testing, as were smear-negative respiratory specimens for which NAA testing was requested by the ordering physician. For each specimen tested, MTD was performed on an undiluted sediment and on a 1:10 dilution of the sediment, in order to minimize the effects of potential MTD reaction inhibitors, as previously described (6,7). A specimen that was negative on both undiluted and diluted sediments was considered to be negative. A specimen with a positive result on the undiluted and diluted sediment was considered positive. A specimen with a negative result for the undiluted sediment and a positive result for the diluted sediment was considered to be positive. A specimen with a positive result on the undiluted sediment and a negative result on the diluted sediment was
considered positive if both Relative Light Unit values were borderline; otherwise the specimen was considered to be equivocal and subject to repeat testing. On the basis of data collected over a 30-month period (July 1, 2009 to June 30, 2011), sensitivity of this modified MTD test was 97.8% (MTD was positive in 88 of 90 TB-culture-positive specimens) among smear positive specimens and 93% (MTD was positive in 14 of 15 TB-culture-positive specimens) among smear-negative specimens. Specificity was 98.3% (MTD was negative in 57 of 58 TB-culture-negative specimens) among smear-positive specimens and 98.7% (MTD was negative in 153 of 155 TB-culture-negative specimens) among smear-negative specimens.

RESULTS
Among specimens collected between July 1, 2010 and June 30, 2011, 9382 were respiratory specimens from 5,475 individuals, including 78 culture-positive TB cases (1.4%). Among the 5,475 individuals tested, 72 (1.3%) were smear-positive, and 5403 (98.7%) were smear-negative, including 11 who produced at least one smear-positive specimen after producing only smear-negative specimens during the first week. Thirty-five (48.6%) of 72 smear-positive individuals were ultimately confirmed as culture-positive TB cases, compared to 43 (0.8%) of 5,403 smear-negative individuals. Among 78 TB cases with positive cultures during the study period, 6 were not tested by NAA because they had previously been identified as TB cases. These were excluded from subsequent analyses. Among the remaining 72 culture-positive TB cases, 31 were smear-positive, and 41 were smear-negative. Of the 31 smear-positive TB cases, 29 (93.5%) were correctly identified by NAA testing, and 2 were not NAA tested for unknown
reasons. Of the 41 smear-negative TB cases, only 4 (9.8%) were tested by NAA, including 3 that were NAA-positive, and 1 that was NAA-equivocal.

The following analyses were based on the assumption that 5,469 individuals were candidates for NAA testing (the 5,475 individuals described above, less the 6 previously identified TB cases), and that 72 culture-positive TB cases could have been identified by NAA testing. Our current practice of performing NAA testing on smear-positive patients allowed us to identify 29 TB culture-positive cases after testing only 53 individuals, a yield of 54.7%. Alternatively stated, this practice allowed us to identify 40.3% of a total of 72 culture-positive TB cases, while only requiring us to test 1.0% of a total of 5,469 respiratory specimens (Table 1). The practice of NAA testing smear-negative specimens upon clinician request has a yield of 3.8%, allowing us to identify 3 culture-positive TB cases (4.2% of all culture-positive TB cases) after testing 79 smear-negative individuals (1.4% of all smear-negative individuals).

Proposed selection criteria are listed in Table 1, along with the numbers of individuals and the number of culture-confirmed TB cases that each criterion encompasses. The categories include individuals submitting specimens via any correctional facility, a particular public health hospital, any local board of health, and any TB clinic. We also considered NAA testing all individuals aged 25-44 years, because 42% of newly-identified TB cases in Massachusetts are aged 25-44 years, while only 12% of individuals submitting respiratory specimens for mycobacterial testing are aged 25-44. The ratio of the number of culture-confirmed TB cases to the number of individuals that would need
to be tested was greater for each of these five proposed criteria than for the strategy of NAA testing smear-negative individuals on the basis of clinician request.

Addition of multiple selection criteria to our two existing criteria (NAA test for smear-positive specimens and any specimen by clinician request) produces incremental and cumulative effects in terms of number of culture-confirmed TB cases identified and number of specimens to be tested, as presented in Table 2. By NAA testing smear-positive specimens, and smear-negative specimens as requested by the clinician, we would identify 32 (44.4%) of 72 culture-positive TB cases after testing 132 (2.4%) of all 5,469 individuals. If we add the four provider criteria, we would identify an additional 15 (21.0%) of 72 culture-positive TB cases after testing an additional 293 (5.4%) of all 5,469 individuals, assuming a 72% MTD test sensitivity among smear-negative specimens. Using all six criteria, we would identify 47 (65.4%) of 72 culture-positive TB cases after testing 425 (7.8%) of all 5,469 individuals. If we used all seven criteria, we would identify 54 (74.4%) of 72 culture-positive TB cases after testing 933 (17.1%) of all 5,469 individuals. Figure 1 illustrates how the ratio of the percentage of TB cases identified to the percentage of individuals tested decreases as less-selective criteria are added, until the strategy of universal testing maximizes both the percentage of specimens tested at 100% (5,469/5,469) and the percentage of culture-confirmed TB cases identified by NAA test at 84.4% (61/72).

DISCUSSION
In this analysis, we demonstrate that application of non-clinical selection criteria for TB NAA testing can substantially increase the number of TB cases identified without the prohibitive expense associated with a strategy of universal testing. We suggest a strategy by which NAA testing criteria are implemented in descending order of yield, with the highest yield categories being added first to the list of selection criteria, and the lower yield categories being added only as allowed within the constraints imposed by limited testing resources.

For our laboratory specifically, we plan to continue to test smear-positives and smear-negatives upon request. However, we also plan to test an additional 293 (5.4% of 5469) specimens received from correctional facilities, the public health hospital, TB clinics, and local boards of health, thereby increasing by 15 (22.5%) the number of TB cases identified by NAA test. In fact, we anticipate being able to identify up to 19 (26.4%) additional TB cases, reflecting our actual smear-negative sensitivity of 93% rather than the 72% sensitivity used in this analysis. During the study period, the median time to identification of a TB case by NAA test in our laboratory was two days, versus 21 days for identification by culture. As such, the estimated potential increase in the number of TB cases identified by NAA test would likely have substantial clinical and public health impact, by limiting patient morbidity and mortality, reducing the opportunity for disease transmission, and expediting contact investigation. If laboratory funding improves in future years, we could consider adding to our list of testing criteria the category of patients aged 25-44 years. It is unlikely, though, that we would ever consider a strategy of universal testing, even if we had the financial resources to do so. After selecting out
the high-risk individuals with the first 6 or 7 criteria, the prevalence of TB in the remaining smear-negative individuals would be so low (0.2%) that the false positive rate would become unacceptably high (83%)(calculations not shown).

Another general approach to improving the yield of TB NAA testing, especially among smear-negative specimens, could be to perform NAA testing on two or more specimens per patient. One recent study found that overall TB NAA sensitivity for smear-negative specimens increased from 72.5% to 85.1% when two specimens per patient were tested instead of only one (1). In our study, only four smear-negative individuals with culture-confirmed TB were tested by NAA, of which only one did not have a positive NAA test result. If, during the study period, we had performed NAA testing on a second specimen from each patient whose initial specimen was NAA test-negative (assuming that we received a second specimen from each of these individuals, which we did not), then we would have had to have performed an additional 100 NAA tests in order to have had the possibility of correctly identifying the one TB case. The yield on this strategy is too low to consider at present. However, we will re-evaluate our data when the number of smear-negative TB cases tested by NAA increases, as we expect to occur after we begin targeted NAA testing of specimens submitted by high-risk providers.

Although our results are specific to our own laboratory and its associated patient population, other public health laboratories performing similar analyses of non-clinical risk factors in their own settings would likely be able to identify comparable NAA test selection criteria of similarly high yield. This strategy could also be applied in the
clinical laboratory setting, where non-clinical risk criteria might include hospital wards (e.g., medical versus surgical versus intensive care), subspecialty groups (e.g., pulmonary versus infectious disease versus oncology), or satellite clinics identified as being high risk. In addition, it is likely that selection criteria that we considered and dismissed could be useful in a different setting. For example, we speculate that race and country of origin could be useful as test selection criteria, since these factors have strong associations with TB incidence in Massachusetts and nationally (2). However, these data are not required on our test requisition, and are too inconsistently available to be of value as selection criteria in our laboratory. This may not be the case in other laboratories.

We acknowledge several limitations of this analysis. First, this study is based on retrospective review of data that were collected along with routine diagnostic specimens, without the benefit of active real-time data quality management and control. Second, we may have underestimated the number of previously known TB cases that were excluded from analysis. Our only means of identifying a previously known TB case was by finding the individual’s name and positive culture result in an earlier portion of our laboratory database. We would not have identified previously known TB cases who were diagnosed without laboratory confirmation, or who were culture-confirmed at a different laboratory. However, we expect that the number of these cases should be low, since 75% of TB cases nationally were laboratory-confirmed (3), and most TB cases in Massachusetts are confirmed by our laboratory. Finally, our analyses are based on only one year of testing data, with most of our proposed selection categories being associated with fairly small numbers of specimens and TB cases. Similar analyses of the yield of
various NAA test selection criteria would need to be conducted on an ongoing and routine basis to ensure consistency in results, and to identify changes in the risk categories associated with the highest yields.

In conclusion, we propose a strategy by which public health laboratories can optimize the use of TB NAA testing without resorting to universal testing, and without the challenges associated with clinician education campaigns. This approach provides laboratories with a simple, well-defined and feasible strategy for effectively increasing the number of TB cases that are identified by rapid diagnostic methods.

ACKNOWLEDGMENTS

This work was supported in part by the TB Prevention and Control Cooperative Agreement 5US2PS100516-30 from the Centers for Disease Control and Prevention.

We thank the members of the Massachusetts Department of Public Health Mycobacteriology Laboratory for their technical support, Barbara Werner and Tracy Stiles, Massachusetts Department of Public Health Laboratory, for manuscript review, and David Warshauer, Wisconsin State Laboratory of Hygiene, for guidance and perspective.
REFERENCES


TABLE 1: Number (%) of individuals and culture-confirmed TB cases, by proposed test criterion

<table>
<thead>
<tr>
<th>Test criterion</th>
<th># (%) individuals (total 5469)</th>
<th># (%) culture-positive TB cases (total 72)</th>
<th>No. culture-confirmed TB cases/No. individuals, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st smear-positive</td>
<td>53 (1.0)</td>
<td>29 (40.3)</td>
<td>54.7</td>
</tr>
<tr>
<td>Smear-negatives upon request</td>
<td>79 (1.4)</td>
<td>3 (4.2)</td>
<td>3.8</td>
</tr>
<tr>
<td>Submitted by correctional facilities</td>
<td>4 (0.1)</td>
<td>1 (1.4)</td>
<td>25.0</td>
</tr>
<tr>
<td>Submitted by public health hospital</td>
<td>95 (1.7)</td>
<td>13 (18.1)</td>
<td>13.7</td>
</tr>
<tr>
<td>Submitted by local board of health</td>
<td>46 (0.8)</td>
<td>4 (5.6)</td>
<td>8.7</td>
</tr>
<tr>
<td>Submitted by TB clinic</td>
<td>164 (3.0)</td>
<td>10 (13.9)</td>
<td>6.1</td>
</tr>
<tr>
<td>Age 25-44</td>
<td>660 (12.1)</td>
<td>38 (52.8)</td>
<td>5.8</td>
</tr>
<tr>
<td>All specimens</td>
<td>5469 (100.0)</td>
<td>72 (100.0)</td>
<td>1.3</td>
</tr>
</tbody>
</table>
TABLE 2: Incremental and cumulative number (%) of individuals tested, number (%) of culture-positive TB cases identified, and yield, with addition of each new test criterion

<table>
<thead>
<tr>
<th>test criteria</th>
<th>Incremental changes with addition of each new criterion</th>
<th>Cumulative yields with addition of each new criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incremental # (%) specimens tested with each additional criterion (n=5469)</td>
<td>Incremental # (%) culture-positive TB cases identified with each additional criterion (n=72)</td>
</tr>
<tr>
<td>1st smear-positive</td>
<td>53 1.0%</td>
<td>29 40.3%</td>
</tr>
<tr>
<td>Smear-negatives upon request</td>
<td>79 1.4%</td>
<td>3 4.2%</td>
</tr>
<tr>
<td>Submitted by correctional facility*</td>
<td>4 0.1%</td>
<td>1 1.0%</td>
</tr>
<tr>
<td>Submitted by public health hospital*</td>
<td>90 1.6%</td>
<td>6 9.0%</td>
</tr>
<tr>
<td>Submitted by local board of health*</td>
<td>42 0.8%</td>
<td>2 3.0%</td>
</tr>
<tr>
<td>Submitted by TB clinic*</td>
<td>157 2.9%</td>
<td>6 8.0%</td>
</tr>
<tr>
<td>Age 25-44*</td>
<td>508 9.3%</td>
<td>6 9.0%</td>
</tr>
<tr>
<td>Universal testing*</td>
<td>4536 82.9%</td>
<td>7 10.0%</td>
</tr>
</tbody>
</table>

*assuming that all additional specimens in these categories are smear-negative, and that MTD test sensitivity is 72% for smear-negatives
FIGURE 1: Total number (%) of culture-positive TB cases identified annually by NAA test, versus total number (%) of respiratory specimens that would be tested, for each additional NAA test selection criterion added.

Selection criteria: (a) none; (b) smear-positives only; (c) smear-negatives upon clinician request; (d) specimens from correctional facilities; (e) DPH hospital; (f) LBOH; (g) TB clinics; (h) patients aged 25-44; (i) universal testing.