Self Collection of Foam Nasal Swabs for Respiratory Virus Detection by PCR among Immunocompetent Subjects and Hematopoietic Cell Transplant Recipients

Angela P. Campbell,¹,²,³ Jane Kuypers,¹,² Janet A. Englund,¹,²,³ Katherine A. Guthrie,² Lawrence Corey,¹,² and Michael Boeckh ¹,²

¹University of Washington, Seattle, WA; ²Fred Hutchinson Cancer Research Center, Seattle, WA; ³Seattle Children’s Hospital, Seattle, WA

Running title: Self Collection of Foam Nasal Swabs

Corresponding author:

Angela Campbell E-mail: angela.campbell@seattlechildrens.org

4800 Sand Point Way NE Phone: (206) 987-1883

Mailstop R-5441 Fax: (206) 987-3890

Seattle WA 98105

Keywords: Respiratory Virus, Collection Method, Transplantation
ABSTRACT

Self-collected foam nasal swabs (NS) obtained after instillation of saline spray were compared with nasal washes from immunocompetent subjects during 146 upper respiratory infections (URIs); sensitivity for RT-PCR respiratory virus detection was 95% and 88%, respectively (p=0.06). Sensitivities from NS collected with and without saline spray during 142 URIs from immunocompetent subjects were 96% and 86% (p=0.004), and from 140 URI samples from hematopoietic cell transplantation recipients were 88% and 85% (p=0.56), respectively.
A simple, sensitive, and noninvasive method for collection of respiratory samples is valuable for patient care and studying respiratory virus epidemiology. Rapid diagnosis of respiratory viruses also enables implementation of potential treatment and infection prevention measures, essential for immunocompromised patients. Historically, the “gold standard” for respiratory virus detection has included nasal washes (NW) or nasopharyngeal swabs collected by medical personnel. Recent reports have shown that nasopharyngeal or nasal swabs (NS) collected from children compare favorably to NW/nasopharyngeal aspirates for PCR detection of most respiratory viruses (2, 14, 18, 19, 22). Furthermore, parent- or self-collected swabs are useful for community-based respiratory virus research (1, 3, 4, 12, 13, 15). In these studies, cotton, dacron, or nylon swabs were collected without nasal spray, stored in transport medium, and processed immediately or stored at 4°C.

We sought to optimize a simple and reliable method for self-collection of respiratory samples in immunocompetent subjects and allogeneic hematopoietic cell transplant (HCT) patients of all ages, and specifically evaluated polyurethane foam swabs because of comfort and safety. We first compared self-collected foam NS obtained after nasal saline spray versus NW from immunocompetent subjects with upper respiratory infections (URIs). Subsequent comparisons between self-collected NS with and without nasal spray were conducted among immunocompetent subjects and HCT recipients to determine importance of the saline spray.

Polyurethane foam swabs (Super Brush, LLC; #71-4541) were used in immunocompetent volunteers. Before enrolling HCT recipients, we transitioned to sterile polyurethane foam swabs with a custom-shaped tip (Puritan Medical Products Co, LLC; #25-1805 1PF SC2 Arrow). For
optimization, foam swabs were initially compared with flocked nylon swabs (Copan Diagnostics, Inc; #502CS01) and 3 transport media evaluated: lysis buffer, universal transport medium (UTM; Copan Diagnostics, Inc), and isotonic saline. Using saline solution spiked with known concentrations of parainfluenza (PIV) type 3 and influenza A, no inhibition of RT-PCR was seen with either swab type or transport media. Recovery of influenza A and PIV3 from foam swabs was similar for all 3 collection media at 1, 2, and 7 days, and similar at room temperature and 4°C. Therefore, foam NS were collected and transported in dry tubes at room temperature for subsequent analyses.

Immunocompetent volunteers with respiratory symptoms reported within 3 days were recruited for comparison of virus detection from self-collected foam NS and staff-collected NW (Figure). Outpatient HCT recipients with documented viral URIs were recruited to provide weekly self-collected samples until viral testing was negative. Subjects were asked to blow their nose to remove mucus. For self collection, 5 sprays (0.5 mL) of saline from a polyethylene metered spray bottle were instilled into the naris prior to swab insertion. The NS was rotated for 5 seconds, placed into a dry tube, and stored at room temperature. NW was collected from the opposite naris using 5 mL normal saline (2.5 mL for children), and transported at 4°C. Subsequently, study subjects (immunocompetent and immunocompromised) collected a “dry” NS by inserting a foam swab into the anterior naris, rotating for 5 seconds, and placing swab into an empty transport tube, followed by collection of a “wet” NS in the opposite naris after nasal saline spray (Figure).

Subjects were allowed to participate during more than one URI if >4 weeks apart. Paired collection of saline and dry foam swabs was performed 2-7 days after initial NW in 10
immunocompetent subjects. All subjects completed symptom surveys. The Fred Hutchinson
Cancer Research Center and Seattle Children’s Hospital Institutional Review Boards approved
this study; written consent and assent forms were obtained.

Swabs from immunocompetent subjects were transported by study personnel; HCT recipients hand-
carried weekly NS to the outpatient clinical laboratory. Before extraction, secretions in the saline NS
were adjusted to 1 mL with addition of 0.5 mL Hank’s Balanced Salt Solution (HBSS); 1 mL was added
to the dry-collected NS. Samples were vigorously vortexed, free liquid pipetted off, and nucleic acid
extracted from 200 μL as previously described (11). Qualitative real-time RT-PCR assays were
performed for 15 respiratory viruses using previously described methods and a newly developed in-
house assay for human bocavirus (5, 8-11, 17, 20).

Samples from incident URIs from immunocompetent subjects were treated as independent
observations, but simultaneous virus detections as repeated measures. Samples from HCT
recipients were treated as dependent observations within recipient. Each sample was considered
a true positive if either method was positive. Linear regression models in true positive samples
were applied to compare method sensitivity. To incorporate correlated data from multiple
viruses per sample in an already paired-sample data structure, a difference score was coded; i.e.,
for saline and dry swabs: -1 if saline negative/dry positive, 0 if concordant, 1 if saline
positive/dry negative. Sensitivities with 95% confidence intervals were estimated via logistic
regression models in true positive samples. For all models, robust standard errors were
 calculated. P-values were obtained from the Wald test without adjustment for multiple
comparisons. Analyses were performed using SAS Version 9.1 (SAS Institute Inc., Cary, NC).
Paired samples were collected during 146 incident URIs from 121 immunocompetent subjects (including 3 parent-collected NS). Swab processing in the laboratory took place a median of 1 day after NS collection (range, 0–6 days). At least one sample had a respiratory virus detected by either collection method in 86/146 (59%) illness episodes (Table 1).

For comparison with and without saline spray, NS samples were collected during 142 URIs from 92 subjects (including 12 parent-collected NS). Swab processing took place a median of 1 day after collection (range, 1–6 days); 95% NS were processed in ≤2 days. At least one sample had a respiratory virus detected by either method in 104/142 (73%) illness episodes (Table 2.A.).

Forty adult HCT patients with a clinical sample positive for a respiratory virus were followed longitudinally (32 patients were positive on first follow-up) for a median of 3 weeks (range, 1–9 weeks), providing 140 weekly paired NS samples. Swab processing occurred a median of 1 day after collection (range, 1–8 days); 95% were processed in ≤2 days. Three patients had 2 viruses detected simultaneously; 2 patients had a second virus detected during follow-up. At least one sample had a respiratory virus detected by either method in 110/140 (79%) swab pairs (Table 2.B.).

In general, swabs collected with saline spray performed better. This was most apparent in the immunocompetent group (Table 2). The improved performance of NS collected with saline was more pronounced in immunocompetent subjects without rhinorrhea than in those with rhinorrhea (p=0.07 for interaction).
Seventy-five immunocompetent subjects completed an acceptability survey. Most strongly agreed or agreed that it was comfortable (87%) and simple (96%); all reported willingness to participate in future studies. Sixty-one percent of 28 respondents who underwent NW comparison testing reported they strongly agreed or agreed they preferred self-collection over NW, 32% reported no preference, and 7% disagreed or strongly disagreed.

We report a comprehensive study of NS self-collection for diagnosis of respiratory virus infections in immunocompetent subjects and HCT recipients. We first examined optimal transport media and temperature, demonstrating that storage in dry tubes at room temperature was logistically feasible, with no apparent effect of time to processing on sensitivity of virus detection. We chose foam swabs because they are absorptive and potentially less likely than nylon, dacron, or cotton to induce bleeding in HCT patients with mucositis or thrombocytopenia. Another study utilizing foam swabs documented better performance compared with nylon flocked swabs for rapid influenza antigen testing (21). Foam NS collected with saline nasal spray provided excellent results compared with NW, and saline spray improved performance compared to dry swabs alone. We hypothesize that saline spray may disrupt nasal respiratory epithelial cells, allowing for improved diagnostic yield.

Although we compared the overall number of respiratory virus detections between collection methods, we lacked adequate subjects to make virus-specific comparisons. We also report results for a relatively small number of subjects without rhinorrhea. Collection of combined nasal and oropharyngeal samples could potentially increase sensitivity for respiratory virus detection (6, 7, 16). However, a small increase in sensitivity must be balanced by the cost of additional swabs, increased patient discomfort, and compliance issues. Our goal was to develop
a comfortable, simple, and safe method for transplant patients with mucositis and nausea, and a
throat swab in this situation might be undesirable. In the future, it would be of benefit to assess
the added value of an oropharyngeal swab.

In conclusion, we have developed a well-accepted and sensitive method for self-collection of
respiratory samples that is simple and safe for immunocompromised children and adults, and
does not require transport media or refrigeration. This collection method will enable future study
participants to collect samples at home that could be shipped to the laboratory, reducing infection
control concerns while allowing for studies of outcomes or potential antiviral therapies. This
method could potentially be applied to family members and health care workers caring for
immunocompromised patients, or could be employed in a pandemic situation (3), in which
prompt diagnosis of viral disease is essential while minimizing patient exposure. Foam NS
collected with saline spray increased sensitivity for virus detection in both immunocompetent
subjects and HCT patients compared with dry swabs, and we recommend this approach as an
alternative to NW for conducting respiratory virus surveillance.
Acknowledgments

The authors thank Cheryl Callais, Victor Chow, Alex Weiss, Denise Della, Robert Farney, Karin Oesterich, Deborah Reyes, Srilata Remala, Noelle Gichohi, Gynevill Jolly, Jennifer Klein, and Christi Dahlgren for study coordination and assistance; Julia Emerson for statistical consultation; and Terry Stevens-Ayers, Tera Matson, Sam Chatterton-Kirchmeier, Abe Guerrero, Nancy Wright, Reggie Sampoleo, Rohit Shankar, and Anne Cent for laboratory expertise.

Financial support: This work was supported by National Institutes of Health (grants CA 18029, HL081595, and K23HL091059, L40AI071572, and K24HL093294). A.P.C. also received support from the MedImmune Pediatric Fellowship Grant Award, the Pediatric Infectious Diseases Society Fellowship Award funded by MedImmune, and the Seattle Children’s Center for Clinical and Translational Research and CTSA grant ULI RR025014.

Potential conflicts of interest: M. B. received research support from Roche and GlaxoSmithKline, and is a consultant for Gilead and GlaxoSmithKline. J.A.E. received research support from Novartis and Chimerix, and is a consultant for Novavax and GlaxoSmithKline. All other authors have no potential conflicts of interests to disclose.
REFERENCES

Figure 1. Algorithm of respiratory sample collection and comparisons among immunocompetent subjects and hematopoietic cell transplant (HCT) recipients.

URI=upper respiratory infection, NW=nasal wash, NS= nasal swab.

Table 1. Comparison of collection methods using RT-PCR for detection of respiratory viruses in 121 immunocompetent subjects: nasal wash (NW) versus foam nasal swab (NS) samples with saline spray during 146 incident upper respiratory infections.

<table>
<thead>
<tr>
<th>Respiratory virus</th>
<th>Number of virus detections</th>
<th>Sensitivity, % (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Both Pos. NW Pos, NS Neg</td>
<td>NS Pos, NW Neg</td>
<td>NW</td>
</tr>
<tr>
<td>RSV</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flu A</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flu B</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HMPV</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIV (types 1-4)</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HCoV (4 types)</td>
<td>13</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>HRV</td>
<td>39</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AdV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HBoV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total*</td>
<td>73</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

*60 swab pairs were negative in both samples; 86 pairs were positive in at least 1 swab with 2 viruses detected in 2 swab pairs.

RSV=respiratory syncytial virus, Flu=influenza, HMPV= human metapneumovirus, PIV=parainfluenza virus, HCoV= human coronaviruses (OC43, 229E, NL63, HKU1), HRV=human rhinoviruses, AdV=adenovirus, and HBoV=human bocavirus
Table 2. Comparison of RT-PCR for detection of respiratory viruses in foam nasal swabs (NS) collected with and without the use of nasal saline spray. **A)** 92 immunocompetent subjects with 142 incident upper respiratory infections; **B)** 40 HCT recipients with previously diagnosed respiratory virus infections with 140 weekly paired follow-up swabs.

<table>
<thead>
<tr>
<th>Respiratory virus</th>
<th>Number of virus detections</th>
<th>Sensitivity, % (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Both Pos.</td>
<td>Saline Pos, Dry Neg</td>
<td>Dry Pos, Saline Neg</td>
</tr>
<tr>
<td>A. Immunocompetent Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flu A</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Flu B</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HMPV</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIV (types 1-4)</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HCoV (4 types)</td>
<td>11</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>HRV</td>
<td>52</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AdV</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>HBoV</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>+ Rhinorrhea (n=117)</td>
<td>84</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>– Rhinorrhea (n=25)</td>
<td>13</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>B. HCT Recipients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV</td>
<td>23</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>HMPV</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PIV (types 1-4)</td>
<td>24</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>HCoV (4 types)</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>HRV</td>
<td>34</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>AdV</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>88</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>+ Rhinorrhea (n=84)</td>
<td>62</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>– Rhinorrhea (n=54)</td>
<td>26</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

* 38 swab pairs were negative in both samples; 104 pairs were positive in at least 1 swab with 2 viruses detected in 9 swab pairs and 3 viruses detected in 3 swab pairs.

* 30 swab pairs were negative in both samples; 110 pairs were positive in at least 1 swab with 2 viruses detected in 10 swab pairs. No detections were made for influenza A, influenza B, and human bocavirus.

* Two patient symptom surveys omitted because no data reported for rhinorrhea.

RSV=respiratory syncytial virus, Flu=influenza, HMPV= human metapneumovirus, PIV=parainfluenza virus, HCoV= human coronaviruses (OC43, 229E, NL63, HKU1), HRV=human rhinoviruses, AdV=adenovirus, and HBoV=human bocavirus.