Pre-multidrug resistant *Mycobacterium tuberculosis* Beijing strain associated to disseminated tuberculosis in a pet dog

Ana Botelho\(^a\), João Perdigão\(^b\), Ana Canto\(^a\), Teresa Albuquerque\(^c\), Nuno Leal\(^c\), Rita Macedo\(^d\), Isabel Portugal\(^b\), Mónica V. Cunha\(^a\)

INIAV, I.P.- Instituto Nacional de Investigação Agrária e Veterinária, Unidade Estratégica de Produção e Saúde Animal, Lisboa, Portugal\(^a\)

Centro de Patogénesis Molecular, URIA, Faculdade de Farmácia da Universidade de Lisboa, Portugal\(^b\)

Hospital Veterinário do Oeste, Lourinhã, Portugal\(^c\)

Laboratório de Saúde Pública: Micobacteriologia/Tuberculose, Departamento de Saúde Pública, Administração Regional de Saúde de Lisboa e Vale do Tejo, I.P., Lisboa, Portugal\(^d\)

\(^a\)Corresponding author: ana.botelho@iniav.pt

Running Title: Pre-multidrug resistant *M. tuberculosis* in a dog

Keywords: *Mycobacterium tuberculosis*, disseminated tuberculosis, public health, multidrug resistance, zoonosis
Resistance to isoniazid, ethambutol and streptomycin was detected in a *Mycobacterium tuberculosis* strain, belonging to Beijing family lineage, isolated from two nodules exudates of a Yorkshire terrier with generalized tuberculosis. This report alerts to the risk of dissemination of pre-multidrug resistant tuberculosis (preMDR-TB) through the exposure to *M. tuberculosis*-shedding pets.
An 18-month old Yorkshire male dog presenting symptoms of weight loss, cough, prostration, diarrhoea, and hyperthermia (40ºC) was clinically evaluated in a private veterinary practice. The dog was treated with metronidazole and cefixime without improvement. Subsequent clinical inspection detected two cutaneous nodules in the right hind limb and scapula, from which exudates were collected for bacteriological analysis. Haematology tests revealed anaemia, neutrophilia, hypoalbuminemia, high gamma-glutamyltransferase and high serum alkaline phosphatase activities. Thoracic and abdominal radiographs together with abdominal ecography revealed hepatomegaly, slight mediastinal and mesenteric lymph nodes enlargement and abdominal effusion. Cytological preparations from lymph nodes, using May-Grunwald-Giemsa (MGG) staining, revealed pyogranulomatous inflammation, with abundant negative-staining rods in the macrophages cytoplasm, suggestive of generalized TB disease with haematogenous spread. Exudates samples, collected from the two nodules, were processed and decontaminated for bacteriological analysis, according to OIE Manual standard procedures (1), and inoculated onto BACTEC 9000 liquid medium, and Stonebrink, Lowenstein–Jensen, Lowenstein–Jensen with thiophen-2-carboxylic acid hydrazide, Lowenstein–Jensen with pyruvate solid media. The isolate (number 1527), was identified as *Mycobacterium tuberculosis/Mycobacterium africanum* type II by an in-house polymerase chain reaction (PCR)–restriction endonuclease analysis system (PCR-REA), based on *gyrB* gene amplification, followed by hydrolysis with *RsaI* and *SacII* restriction enzymes, as reported previously (2).
The identification of *M. tuberculosis*, rather than other animal-associated members of the *Mycobacterium tuberculosis* complex (MTBC), as the causative agent of extra-pulmonary tuberculosis (TB), prompted us to investigate the genetic relatedness of this animal isolate with clinical isolates recovered from human TB cases. Spoligotyping and 24-loci Mycobacterial Interspersed Repetitive Unit – Variable Number of Tandem Repeats (MIRU-VNTR) analysis were performed to genotype the *M. tuberculosis* isolate. *M. tuberculosis* H37Ra was used as positive control. For spoligotyping, the existing spacer regions in the direct repeat (DR) locus were amplified using GoFlexiTaq polymerase (Promega) and 20 ng of genomic DNA, as reported earlier (3). Detection was carried out by reverse hybridization on a membrane with amino-linked immobilized probes for the standard set of 43 spacer regions, using the ECL® Chemiluminescence Detection System (GE Healthcare®), following the manufacturer’s instructions. Lineage, clade and SIT assignments of spoligotyping profiles were done using the SITVIT WEB international database (http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/index.jsp) (4). The isolate was classified as the most frequent shared international type (SIT) 1, which is associated with the Beijing family (Table 1).

MIRU-VNTR amplification was done as described before (5) in triplex amplification reactions. Amplicon sizing was performed by capillary electrophoresis in an ABI 3130XL (Applied Biosystems®), using a custom 1200 bp ROX-labelled MapMarker molecular weight marker. Complementary genotyping, based on 24-loci MIRU VNTR analysis, generated the profile displayed on Table 1.
A combined comparison of the 24-loci MIRU-VNTR and spoligotyping profiles with the profiles from 186 characterized strains deposited in the MIRU-VNTRplus database (http://www.miru-vntrplus.org), revealed that the closest strain was a Beijing lineage isolate recovered from the former Soviet Union, also classified as SIT 1 but differing on two MIRU-VNTR loci (loci 802 and 2165). Based on the same molecular markers, the genetic comparison of the animal strain with human TB isolates recovered from the Lisbon area failed to find any matching profiles (6, 7). Given the importance of *M. tuberculosis* as an ecotype specifically adapted to human TB, the isolate was tested, under standardized conditions, for susceptibility to the first-line drugs used in the treatment of human TB and in the evaluation of multidrug resistance in human isolates. Drug susceptibility testing was performed using the automated fluorimetric BACTEC™ MGIT™960 (BD Diagnostics) for: isoniazid, rifampicin, streptomycin, ethambutol and pyrazinamide. Standardized drug critical concentrations and data interpretation followed the manufacturer instructions (BD Diagnostics). The isolate was found to be resistant to isoniazid, ethambutol and streptomycin (Table 1), which can be considered a pre-multidrug resistant strain.

The notion that *M. tuberculosis* lineages are almost exclusively associated to human TB has been progressively challenged with expanding descriptions in the literature of *M. tuberculosis* infections in domestic (8, 9) and wild animals (10-12). However, evidences gathered so far suggest that most *M. tuberculosis* infected animals probably represent accidental hosts. In captive settings, a few cases of animal *M. tuberculosis* infection with human origin have been reported (13). Thus,
humans suffering from active TB are believed to represent the main source of *M. tuberculosis* lineages in animals, including cattle (14). *Mycobacterium tuberculosis* infection in dogs is rarely reported and has not been previously documented in Portugal. Recently, disseminated *Mycobacterium tuberculosis* infection was also described in a pet dog in Brazil (15), which was apparently caused by contact with infected owner, although molecular typing was not performed to confirm this hypothesis. In our study, genotyping revealed that the dog strain represented the most frequent shared international type (SIT 1) among humans and belonged to a widespread *M. tuberculosis* genetic clade (the Beijing family). No similar 24-loci MIRU-VNTR type of the dog isolate was found among the characterized clinical strains recovered from TB patients in the Lisbon area. Also uncommon was its susceptibility profile, found to be resistant to isoniazid, ethambutol and streptomycin, which can be considered as a pre-multidrug resistant TB strain. Analysis of the published laboratory data on human TB from a six-year period in Lisbon showed that this resistance profile was reported only once, back in 2005 (7). The recovery, from animals that live in proximity with humans, of a resistant strain to the first-line drugs used in TB treatment may represent an increased risk for the dissemination of multidrug resistant tuberculosis (MDR-TB). To our knowledge, this is the first report of an *M. tuberculosis* animal infection involving a drug resistant strain. Since the owners had no clinical symptoms consistent with TB and the pet had no contact with other animals, the infection could possibly have occurred in the first few months after birth, while the animal was still with the breeder. However, this hypothesis could not be further confirmed since, after TB diagnosis, the animal owners were uncooperative and poorly adherent to clinical
recommendations. Because of public health concerns, which were aggravated by the worsening physical condition of the dog, euthanasia of the animal was performed two months after the first symptoms.

Exposure to *M. tuberculosis*-shedding pets and captive wild animals raises public health concerns, particularly because such animal TB cases are caused by an ecotype specifically adapted to human infection. Cases of pets’ tuberculosis have been scarcely reported in Portugal but it is possible that they go unnoticed, so the true impact of these situations in public health is yet to be clarified.

REFERENCES

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Host</th>
<th>DST<sup>a</sup></th>
<th>Octal</th>
<th>SIT</th>
<th>Spoligotyping</th>
<th>MIRU-VNTR loci</th>
</tr>
</thead>
<tbody>
<tr>
<td>1527</td>
<td>Dog</td>
<td>ISE 000000000003771</td>
<td>1</td>
<td>2</td>
<td>4 4 1 3 3 6 3 6 4 4 5 1 3 3 5 3 8 2 3</td>
<td></td>
</tr>
</tbody>
</table>

^a resistant to I – isoniazid, S – streptomycin, E – ethambutol
TABLE 1 Molecular typing data and drug susceptibility profiles (DST) of three *Mycobacterium tuberculosis* isolates from dog and mandrills

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Host</th>
<th>DST<sup>a</sup></th>
<th>Spoligotyping</th>
<th>MIRU-VNTR loci</th>
</tr>
</thead>
<tbody>
<tr>
<td>1527</td>
<td>Dog</td>
<td>iSE</td>
<td>000000000003771</td>
<td>1 2 4 4 2 1 3 3 6 2 6 3 4 4 2 5 1 5 3 3 5 3 8 2 3</td>
</tr>
</tbody>
</table>

^a resistant to I – isoniazid, S – streptomycin, E – ethambutol