Cytomegalovirus can be found in Bone Marrow cells and correlates with Cytomegalovirus in Peripheral Blood Leukocytes

Angela Capobianchi, Anna Paola Iori, Alessandra Miccozzi, Giovanni Fernando Torelli, Anna Maria Testi, Corrado Girmenia, Stefania Santilli, Walter Barberi, *Guido Antonelli, Robin Foà and Giuseppe Gentile

Department of Cellular Biotechnologies and Hematology, and *Department of Molecular Medicine, “Sapienza” University, Rome, Italy

Running title: Cytomegalovirus (CMV) infection of bone marrow cells

Key words: Cytomegalovirus; CMV; pp65-antigenemia; Real time PCR; Bone marrow; Hematopoietic stem cell transplantation

Corresponding author:

Giuseppe Gentile, M.D., Dept. of Cellular Biotechnologies and Hematology
“Sapienza” University. Via Benevento, 6, 00161, Rome, Italy

FAX: ++39 6 85795380 Phone: ++39 6 85795555 E-mail: gentile@bce.uniroma1.it
Abstract

In allogeneic hematopoietic stem cell transplant recipients with Bone Marrow (BM) suppression, Cytomegalovirus (CMV) pp65-antigenemia and DNA were both detectable in peripheral blood leukocytes (PBL) and BM cells. A relationship between CMV infection of PBL and BM cells has been found.
The presence of Cytomegalovirus (CMV) in bone marrow (BM) cells has been investigated in several in vitro and in vivo studies (1-4). Secondary cytopenias (e.g. neutropenia, anemia, thrombocytopenia) are frequent complications after allogeneic hematopoietic stem cell transplant (HSCT) and are potentially related to viral infections, septicemia, graft-versus-host disease and myelotoxic drugs (5,6). In patients suffering from CMV disease a significant correlation of high levels of DNA and pp65-antigenemia (pp65-AG) in plasma and peripheral blood leukocytes (PBL), respectively, has been found in HSCT patients (7,8). However, low levels of CMV DNA are frequently detected following an allogeneic HSCT and CMV disease may still develop in some HSCT recipients and solid organ transplant patients who have negative pp65-AG or low or undetectable levels of CMV DNA in PBL or plasma (9-12). Several studies have compared CMV infection in different blood compartments (plasma, PBL, whole blood) (7,10,13) but, to our knowledge, this is the first prospective in vivo study comparing CMV infection in the BM and PBL compartments of HSCT recipients.

In the present study we analyzed two groups of patients at risk of CMV infection (donor and/or recipient CMV seropositive) with BM suppression and preceding blood samples negative for CMV who were not receiving ganciclovir, foscarnet or cidofovir at the onset of BM suppression. Group I: from November 2001 to December 2009, 24 CMV seropositive patients receiving an allogeneic HSCT, and preceding blood samples negative for CMV pp65-AG, were selected. Virological monitoring was performed by pp65-AG (CINA pool, Argene, France) detection from PBL (2x10^5 cells) and from total BM cells (2x10^5 cells). The presence of one or more pp65-positive cells/2x10^5 cells in PBL and/or BM was considered a positive result (10).

Group II: from January 2010 to May 2012, a group of 14 allogeneic HSCT patients with preceding blood samples negative for CMV DNA was analyzed. Virological monitoring was performed by CMV real time PCR (Nanogen Advanced Technologies, Italy, ELITech group) from PBL (2x10^5 cells) and from total BM cells (2x10^5 cells). The real time PCR is specific for a region of the 3
CMV Major Immediate Early gene (UL123). The DNA lower detection limit was 200 copies/10^5 cells.

BM aspirates were obtained from the patients at the onset of BM suppression in order to exclude the recurrence of haematological disease, a poor bone marrow engraftment and the presence of CMV infection. BM function was considered to be suppressed (either a delay in engraftment or the development of myelosuppression after an initial engraftment) as previously defined (14). This study was approved by the institutional review board.

CMV pp65-AG was detected in 24 of the patients examined and was found in PBL (18 patients)-BM (19 patients) sample pairs (see Table S1 in the supplemental material). The clinical characteristics of the 24 patients are illustrated in Table S2 (see in the supplemental material). There was a good correlation between the CMV pp65 antigen PBL and BM cell number (R=0.514, p=0.03, 95% confidence interval: 0.04-0.79) (Figure 1). No difference between the number of pp65-AG positive cells in PBL [median 11.5 positive cells (range 1-350)] and in BM cells [median 5 positive cells (range 1-60)], was found (Mann-Whitney Test). No patient developed CMV disease.

CMV DNA was detected in 14 of the patients examined and was found in PBL (13 patients)-BM (10 patients) sample pairs (see Table S3 in the supplemental material). The clinical characteristics of the 14 patients are reported in Table S2 (see in the supplemental material). A good correlation between the positive CMV DNA in PBL and in BM cells was found (R=0.72, p=0.02, 95% confidence interval: 0.12-0.93) (Figure 2). There was no difference between the CMV DNA load in PBL [median 600 copies/10^5 cells (range 114-11890)] and in BM cells [median 882 copies/10^5 cells (range 202-7500)], (Mann-Whitney Test). No patient developed CMV disease.
Comparing the CMV viral loads measured by pp65-AG assay and by real time PCR assay in PBL and BM sample pairs, we found a linear correlation between the viral loads in the two compartments. Discordant results were found either using pp65 AG assay or real time PCR assay in both compartments and taking into account that preemptive therapy was initiated at the first detection of CMV in the PBL and/or BM samples, viral kinetics in HSCT patients with 2 or more BM examined cannot be evaluated. A possible presence of peripheral blood in the BM aspirates that may affect the results of the PCR cannot be excluded, since our study was performed on the total, not purified, BM cells. Nonetheless, von Laer et al. (4) provided strong evidence that CD34+ hematopoietic progenitor cells, obtained from bone marrow aspirates of HSCT recipients, were CMV DNA positive.

It is relevant to note that the number of patients who were positive for CMV antigen only in BM samples was slightly higher than the number of the patients positive for CMV DNA only in BM samples [7/24 (29%) versus 1/14 (7%) (p=0.2, Fisher’s exact test), respectively]. The reasons for such discrepancies are not clear. Very little is known about the expression of the pp65-AG in BM cells; in two in vitro studies (1,3) designed to determine whether CMV was able to infect purified CD34+ BM cells, the pp65-AG was detected in hematopoietic progenitor cells. In our study, the higher frequency of CMV DNA observed in PBL rather than in BM cells could be explained in that during active CMV infection, all major PBL subpopulations may contain the CMV genome and granulocytes are the cell population most frequently positive for viral DNA (reviewed in 2). Since CMV in plasma or in whole blood may originate from the lysis of infected PBL, from parenchymal and endothelial cells it would be useful, using these blood compartments, to perform studies in the setting of low systemic viral load such as observed in our patients.

Very little is known about the clinical relevance of the detection of both pp65-AG and DNA in BM cells of immunocompromised patients. Boeckh et al (9) observed an unrelated marrow transplant patient who developed marrow suppression with negative CMV blood culture and pp65-AG; CMV
pp65-antigen and DNA were found later in cultured marrow stromal cells of the patient. Randolph-Habecker et al. (15) conducted a study on 248 CMV seropositive HSCT recipients. The presence of CMV in the BM was measured by nested PCR at day 28, day 80 and 1 year following the HSCT; CMV DNA was found in the BM in 87 patients (35%).

In conclusion, the diagnostic evaluation of BM cells including CMV PCR and/or pp65-AG analysis, may be indicated for HSCT recipients at risk of CMV infection, with BM suppression (either a delay in engraftment or the development of myelosuppression after an initial engraftment) and preceding blood samples negative for CMV. Since the BM suppression may be associated with high mortality or cause severe complications such as bacterial or fungal infections an antiviral treatment should be initiated early.

Acknowledgments:

Part of this research has been presented at the Interscience Conference Antimicrobial Agents Chemotherapy (ICAAC), 2012, abstract V-393, San Francisco, USA.

This work was partially supported by “Sapienza”, University of Rome, Italy (Progetto di Ricerca Finalizzato 2004 and 2005).
REFERENCES


Figure 1. Correlation between the number of pp65-positive cells in BM cells and the number of pp65-positive cells in PBL on the basis of the 17 samples which were positive by both pp65-AG in PBL and BM cells. The number of pp65-positive cells in PBL was plotted on a logarithmic graph against the number of pp65-positive cells in BM cells. The correlation was examined by the Spearman rank test and found to be significant with a correlation coefficient of 0.51 (P=0.03).
Figure 2. Correlation between CMV DNA copy number in BM cells and the number of CMV DNA copy number in PBL on the basis of the 9 samples which were positive by both CMV DNA in PBL and BM cells. The CMV DNA copy number in PBL was plotted on a logarithmic graph against the CMV DNA copy number in BM cells. The correlation was examined by the Spearman rank test and found to be significant with a correlation coefficient of 0.71 (P = 0.02).