Title: Multicenter Evaluation of the Quidel® Lyra™ Direct C. difficile Nucleic Acid Amplification Assay

Running title: Evaluation of the Quidel Lyra Direct C. difficile Assay

Eric T. Beck¹, Blake W. Buchan¹,², Katherine M. Riebe¹, Brenda R. Alkins, Preeti Pancholi³, Paul A. Granato⁴, Nathan A. Ledeboer¹,²#

¹Department of Microbiology, Dynacare Laboratories, Milwaukee, WI, ²Department of Pathology, Medical College of Wisconsin, Milwaukee WI; ³Department of Pathology, The Ohio State University Wexner Medical Center, Columbus OH; ⁴Department of Microbiology, Laboratory Alliance of Central New York, Liverpool, New York

Corresponding Author:
Nathan A. Ledeboer
Assistant Professor Pathology
The Medical College of Wisconsin
9200 W. Wisconsin Ave
Milwaukee, WI 53226
nledeboe@mcw.edu
414-805-7556
FAX 414-805-7560

JCM Accepts, published online ahead of print on 26 March 2014
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
ABSTRACT

*Clostridium difficile* is a gram-positive bacterium commonly found in health-care and long-term care facilities and is the most common cause of antibiotic-associated diarrhea. Rapid detection of this bacterium can assist physicians in implementing contact precautions and appropriate antibiotic therapy within a timely manner. The purpose of this study was to compare the clinical performance of the Quidel Direct Lyra *C. difficile* (LYRA) assay (Quidel, San Diego, CA) to direct cell culture cytotoxicity neutralization assay (CCNA) and enhanced toxigenic culture. This study was performed at three geographically diverse laboratories within the United States using residual stool specimens submitted for routine *C. difficile* testing. Residual samples were tested using the LYRA assay on three real-time PCR platforms, and results were compared to direct CCNA and enhanced toxigenic culture. The test results for all platforms were consistent across all three test sites. The sensitivity and specificity of the LYRA assay on the SmartCycler II, the ABI 7500 Fast DX, and the ABI QuantStudio DX compared to CCNA were 90.0% and 93.3%; 95.0% and 94.2%; and 93.8% and 95.0%, respectively. Compared to enhanced toxigenic culture, the sensitivity and specificity of the LYRA assay on the SmartCycler II, the ABI 7500, and the QuantStudio were 82.1% and 96.9%; 89.3% and 98.8%; and 85.7% and 99.0%, respectively. Overall, the LYRA assay is easy to use, versatile, and compares well to *C. difficile* culture methods.

INTRODUCTION

*Clostridium difficile* is a gram-positive, anaerobic bacillus, which has emerged as a major nosocomial pathogen and the leading infectious cause of antibiotic-associated diarrhea and pseudomembranous colitis (1). In the United States, the number of *C. difficile* infections (CDI) in hospitalized patients has increased from approximately 150,000 patients in 2001 to >300,000 patients in 2005 and continues to rise (2). The increased economic burden in hospitalized patients due to CDI has been estimated at $9,822 to $13,854 per patient and total patient costs...
(healthcare costs plus lost wages) associated with CDI have been estimated to exceed $149 billion annually in the United States alone (3, 4). Several recent studies have demonstrated that rapid and accurate detection of *C. difficile* is an important component of combating hospital acquired CDI and can have a significant benefit to patients and hospitals from a financial and clinical perspective (4-6).

The most appropriate testing strategy for detection of *C. difficile* is not standardized and remains controversial. Several traditional (non-molecular) techniques are currently employed in the diagnosis of *C. difficile* disease. Enzyme immunoassays (EIAs) test for either the presence of *C. difficile* cytotoxins or glutamate dehydrogenase (GDH; a *C. difficile* metabolic enzyme).

These assays can be performed within a few hours, but they lack sensitivity and specificity and the GDH assays cannot differentiate between cytotoxic and non-cytotoxic strains of *C. difficile*. EIAs are not recommended as the sole diagnostic for detection of *C. difficile* disease (1, 7-11).

Cell culture cytotoxicity neutralization assays (CCNA) detect the presence of *C. difficile* cytotoxin by inoculating cell cultures with clarified stool specimens in the presence and absence of *C. difficile* antitoxins and can take up to 48 hours to complete. Finally, enhanced toxigenic culture utilizes traditional *C. difficile* culture methods followed by CCNA on suspected isolates. The Infectious Disease Society of America and Society for Healthcare Epidemiology of America (IDSA/SHEA) guidelines state that enhanced toxigenic culture is the gold standard to which all assays should be compared due to the high sensitivity and specificity, but that this type of testing is not clinically practical due to the slow turnaround time (2 to 3 days) and the lack of standardized protocols (1, 7).

Molecular diagnostics may allow laboratories to combine the best features of all traditional *C. difficile* diagnostics from the speed and ease of EIAs to the high sensitivity and specificity of enhanced toxigenic culture (12, 13). One recent study shows that the number of unnecessary
days of contact precaution and unjustified antibiotic usage decreased by nearly 40% in those
patients who were diagnosed as negative for CDI by molecular testing compared to those
diagnosed with CCNA or enhanced cell culture. The same study showed that the use of
molecular testing decreased the length of hospitalization on average by more than seven days
compared to CCNA or enhanced cell culture (14).

The LYRA assay is a qualitative real-time PCR assay that detects the presence of \textit{C. difficile}
tcdA and/or tcdB genes in liquid or soft stool specimens. Specimens are processed through a
simple preparation step that does not require specialized equipment. Processed specimens are
tested via a standard TaqMan real-time PCR assay utilizing primers/probes that detect, but
don’t distinguish the tcdA and tcdB genes. The purpose of this study was to compare the
clinical performance of the LYRA assay to direct CCNA and enhanced toxigenic culture using
residual specimens from three geographically diverse laboratories within the United States.
Testing with the LYRA assay was performed on three real-time PCR platforms, and results were
compared to direct CCNA and enhanced toxigenic culture.

\textbf{MATERIALS AND METHODS}

**Participating Centers and Overall Study Design:** Three laboratories participated in a
prospective study to assess the clinical performance of the LYRA assay: The Medical College of
Wisconsin, Milwaukee, WI; The Ohio State University, Columbus, OH; and Laboratory Alliance
of New York, Syracuse, NY. All of the laboratories received the appropriate Institutional Review
Board approvals or waivers consistent with local human subject research requirements. All
sites performed the LYRA assay on residual de-identified stool specimens that were submitted
for routine \textit{C. difficile} testing according to each laboratory’s standard practices. An aliquot of
each stool specimen was submitted to a central reference laboratory (Diagnostic Hybrids,
Athens, OH) for direct cell culture cytotoxicity neutralization assay (CCNA) and enhanced toxigenic culture (see materials and methods sections below).

**Specimen collection and handling:** A minimum of 2 mL of liquid stool or a marble-sized soft stool specimen that takes the shape of its container was required for a sample to be enrolled. Each specimen was tested according to the laboratory’s standard of care and an aliquot was then transferred to a new tube with a sterile paddle. Specimens were assigned unique specimen identification numbers and the following patient demographics were recorded: gender, age, collection date, and presence or absence of *C. difficile* by the laboratory’s routine method. Each specimen was inoculated into a vial of LYRA process buffer 1 within 24 hours of collection. The remaining specimen aliquots were stored and shipped to the reference laboratory at 2 – 8°C where reference testing was initiated within 48 hours of sample collection. In total, 619 specimens were enrolled in this study and tested with the LYRA assay on three real-time PCR platforms and with CCNA and enhanced toxigenic culture.

**Direct Cell Culture Cytotoxicity Neutralization Assay:** An aliquot of each stool specimen was processed within 48 hours of collection for direct *C. difficile* CCNA. A 1:5 dilution was prepared by adding 0.5 mL of the stool specimen to 2.0 mL of CCNA diluent. The dilution was mixed well and then centrifuged for 5 minutes at 2000xg. The supernatant was removed and filtered using a 0.45 micron filter. One hundred µL of the sample was inoculated into two wells: a control well (containing the sample and 100 µL of *C. difficile* antitoxin) and a specimen test well (containing the sample and 100 µL of phosphate-buffered saline). These dilutions were incubated at room temperature for 30 minutes. Fifty µL of each dilution was inoculated into two separate wells of a tissue culture plate containing human foreskin fibroblasts and 150 µL of tissue culture media (Diagnostic Hybrids, Athens, OH). The final dilution of the specimen in each well was 1:40. Cell cultures were incubated at 35°C and were examined at 24 and 48
hours. Cell rounding was used to indicate a cytotoxic effect. Specimens were considered positive for the presence of *C. difficile* cytotoxin B if at least 50% of the cells showed cytotoxic effects and if the cytotoxicity was neutralized in the control well by the antitoxin.

**Enhanced *C. difficile* Toxigenic Cell Culture:** An aliquot of each stool specimen was processed within 48 hours of collection for enhanced toxigenic culture. Approximately 0.1 g (1 to 2 drops) of each stool specimen was added to a pre-reduced chopped-meat glucose (CMG) broth (Hardy Diagnostics, Santa Maria, CA) and incubated at 35°C for 48 to 72 hours. The broths were subcultured to modified cycloserine-cefoxitin-fructose agar plates with horse blood (CCFA-HB; Remel, Lenexa, KS). CCFA-HB plates were streaked for isolation and incubated anaerobically at 35°C in a GasPak EZ anaerobe pouch system for 48 to 72 hours. Following incubation, all plates were examined for colonies morphologically resembling *C. difficile* (gray-white colonies with raised centers and irregular filamentous or opaque edges on CCFA-HB plates). All colonies resembling a *Clostridium* spp. were evaluated by Gram stain, vancomycin susceptibility, aerotolerance, and the presence of proline aminopeptidase. *C. difficile* was identified as strict anaerobic, gram-positive bacilli (appearing singly or in chains), susceptible to vancomycin, positive for the presence of proline aminopeptidase, and a characteristic “horse manure” odor. Isolates of *C. difficile* were inoculated into pre-reduced CMG and incubated at 35°C for 4 to 5 days. The presence of *C. difficile* toxin B in the broth culture was determined using the same CCNA test as described previously with the exception of specimen preparation. For CCNA from CMG cultures, 0.5 mLs of the CMG culture broth was centrifuged for 5 minutes at 2000xg and then 0.2 mL of the supernatant was combined with 1.8 mLs of the CCNA diluent (1:10 dilution). The diluted specimen was filtered and used in the CCNA assay as described previously.
Description of the Quidel Lyra Direct C. difficile Assay: The LYRA assay is a real-time PCR assay performed on one of three open platform, real-time thermocyclers [SmartCycler II (SC II), Cepheid, Sunnyvale, CA; ABI 7500 Fast DX (ABI 7500), Applied Biosystems, Carlsbad, CA; and ABI QuantStudio DX (QS DX), Applied Biosystems, Carlsbad, CA]. The test is performed by placing a swab into a liquid or soft stool specimen, evenly coating it with specimen, adding it to Process Buffer 1 and swirling the swab. Thirty µL of Process Buffer 1 containing specimen is added to Process Buffer 2 and the sample is then ready for real-time PCR. Each vial of lyophilized mastermix is rehydrated in 135 µL of rehydration solution (sufficient for 8 reactions) and 15 µL of mastermix is combined with 5 µL of sample (in Process Buffer 2). Each specimen was processed once and used for testing with the LYRA assay on all three of the real-time PCR platforms. The results from each instrument were analyzed separately and any invalid results were retested.

Controls: A positive and negative control was included with each set of processed specimens. The controls were processed in the same manner as the patient specimens. The positive control contains a purified, inactivated strain of C. difficile (NAP1) and the negative control consists of a C. difficile free dilution matrix. The positive and negative controls had to perform as expected for the sample run to be valid. If one of the controls was invalid, the entire run was repeated.

In addition to the external controls, each sample contained an internal control which is used to determine whether the samples were processed correctly and/or to detect the presence of PCR inhibitors in the specimen. The internal control is a component of Process Buffer 2 and does not have to be added to each sample individually.
Result interpretation: The LYRA assay provides a qualitative result for the presence or absence of the \( tcdA/B \) genes. The test result is positive when amplification of the \( tcdA/B \) gene/s occurs regardless of whether or not amplification of the internal control occurs. The test result is negative when no amplification of the \( tcdA/B \) genes occurs AND amplification of the internal control is present. Test results are invalid when there is no amplification of either the \( tcdA/B \) genes or the internal control. Invalid results were repeated once by retesting a new 5 µl aliquot of sample in process buffer 2.

Data analysis and statistical methods: Results of the LYRA assay were compared to the CCNA results and to enhanced toxigenic culture using the CCNA or enhanced toxigenic culture results as the gold standard. Any results that were discordant between the LYRA assay and CCNA or enhanced toxigenic culture were considered false positive or negative results for the LYRA assay. The LYRA results were analyzed individually for each of the three different thermocycling platforms. The clinical sensitivity and specificity along with the 95% confidence intervals were calculated using the efficient-score method (15). The sensitivity and specificity of the LYRA assay were compared between platforms using McNemar’s Test (16-17).

RESULTS

During the course of this study, 619 specimens were evaluated with the LYRA assay. Five (0.81%), nine (1.45%) and one (0.16%) of the samples were invalid on the SC II, 7500 Fast, and the QS DX instruments, respectively. After repeating all tests only one remained invalid. In comparison, three (0.48%) samples were indeterminate using CCNA due to the presence of cytotoxicity in the control well and zero (0.00%) of the samples were indeterminate using enhanced toxigenic culture. Only the 601 results giving valid results on the first attempt with all test platforms and assays were used to evaluate sensitivity and specificity.
Tables 1 and 2 summarize the test results for the LYRA assay compared to CCNA. The sensitivity of the SCII was the least consistent across test sites, ranging from 86.4 – 100.0%, followed by the QS DX (90.9 – 100.0%) and the ABI 7500 (93.6 – 100.0%). Specificity was the least consistent across test sites on the ABI 7500 (89.5 – 96.7%) followed by the SCII (89.5 – 95.5%) and the QS DX (92.1 – 96.1%). The overall sensitivity (95% confidence interval) of the LYRA assay compared to CCNA on the SC II, the ABI 7500, and the QS DX was 90.0% (80.7 – 95.3%), 95.0% (87.0 – 98.4%), and 93.8% (85.4 – 97.7%), respectively. The overall specificity (95% confidence interval) of the LYRA assay compared to CCNA on the SC II, the ABI 7500, and the QS DX was 93.3% (90.7 – 95.2%), 94.2% (91.8 – 96.0%), and 95.0% (92.7 – 96.7%), respectively. Compared to CCNA, the ABI 7500 was the most sensitive and the QS DX was the most specific though there were no statistical differences in performance on any of the platforms (Table 2).

Tables 3 and 4 summarize the test results for the LYRA assay compared to enhanced toxigenic culture. The sensitivity of the SC II was the least consistent across test sites, ranging from 77.4 – 92.3% followed by the QS DX (83.3 – 92.3%) and the ABI 7500 (87.1 – 96.2%). The specificity of the ABI 7500 platform was the least consistent across sites (95.7 – 100.0%) followed by the SC II (95.7 – 97.3%) and the QS DX (98.6 – 100.0%). The overall sensitivity (95% confidence interval) of the LYRA assay compared to enhanced toxigenic culture on the SC II, the ABI 7500, and the QS DX was 82.1% (73.5 – 88.5%), 89.3% (81.7 – 94.1%), and 85.7% (77.5 – 91.4%), respectively. The overall specificity (95% confidence interval) of the LYRA assay compared to enhanced toxigenic culture on the SC II, the ABI 7500, and the QS DX was 96.9% (94.9 – 98.2%), 98.8% (97.2 – 99.5%), and 99.0% (97.4 – 99.6%), respectively. Like the comparison to CCNA, the LYRA assay was the most sensitive on the ABI 7500 and the most specific on the QS DX platforms compared to enhanced toxigenic culture. Unlike the comparisons of the LYRA assay to CCNA there were significant differences in sensitivity and
specificity between platforms. The ABI 7500 was significantly more sensitive than the SC II (p = 0.008) and both the ABI 7500 and QS DX were significantly more specific than the SC II assay (p = 0.022 and p = 0.021, respectively).

**DISCUSSION**

The LYRA assay is an FDA approved real-time PCR assay for the detection of the *C. difficile* tcdA/B genes. In this study, we compared the performance of the LYRA assay to two well-established culture methods. Additionally, we compared the performance of the assay across all three real-time platforms which are FDA-cleared for use with this assay, in parallel, using the same specimens.

Compared to CCNA the real time PCR platforms did not significantly vary in performance with sensitivities and specificities ranging from 90.0 – 95.5% and 93.3 – 95.0%. However, compared to enhanced toxigenic culture the ABI 7500 was significantly more sensitive than the SC II (89.3 vs. 82.1%) and both the ABI 7500 and the QS DX were significantly more specific than the SC II (98.8% and 99.0% vs. 96.9%). There are several possible explanations for these discrepancies. The most logical reason is that the SC II performs extension at a lower temperature (66°C) than the ABI 7500 (68°C) or the QS DX (68°C) increasing the chance for non-specific amplification. Another difference between the platforms is the filters. All of the instruments have similar optical filters, however, the optimal wavelengths for each filter aren’t exactly the same and even slight differences in the optics could account for the differences in the results. Finally, the QS DX and the ABI 7500 utilize a 96-well plate format where the cycling and optics are consistent for all wells of the plate. The SC II works more like a series of individual thermocyclers. If even one SC II module at one test site was slightly out of calibration it would be difficult to notice and could account for a few additional false results. It would only take a few additional false results to make the platform appear less sensitive or specific.
Despite the fact that there are some significant differences between platforms the results with all platforms compare favorably to those obtained with other molecular assays for the detection of C. difficile, as evidenced by the product inserts and many additional clinical studies (11, 18-25).

In addition to the fact that there are some performance differences between thermocycling platforms, the LYRA assay also has a few other minor drawbacks. These include the fact that it does not identify specific C. difficile markers that are often associated with epidemic strains of C. difficile (e.g. binary toxin or ΔtcdC deletion mutations). However, this is only a minor concern as none of the current infection control or treatment guidelines recommend changes in practice or treatment based solely on the strain C. difficile (7). Another minor drawback of this test is that it lends itself more to a “batch testing” format rather than an “on demand testing” format. The batches can be relatively small based on the reagent packaging, but the need for inclusion of a positive and negative control with each sample makes testing most efficient and cost effective when samples are processed simultaneously in larger batches.

Like other recently FDA-approved C. difficile molecular assays, the LYRA assay requires only 2-3 hours to complete and compares favorably to enhanced toxigenic culture (sensitivity and specificity of approximately 85.7% and 98.3%, respectively, depending on the thermocycling platform used for testing). These results are relatively consistent across three test sites on all three test platforms despite the fact that each site may have different patient populations and different C. difficile ribotypes circulating. Finally, the only equipment required to run this assay is a real-time thermocycler. With three options to choose from most high complexity laboratories will already have one of these instruments available making the initial investment more manageable. Overall, the LYRA assay has proven to be an easy to use, versatile molecular test for the detection of toxigenic C. difficile infection.
ACKNOWLEDGEMENTS
The authors would like to thank the Diagnostic Hybrids Reference Laboratory (Athens, OH) for serving as the central reference laboratory for this study. In addition, the authors are grateful to the staff of all of the clinical laboratories who participated in this study for their support and help evaluating the LYRA CDF assay. This study was sponsored by Quidel Corporation (San Diego, CA).

REFERENCES


Table 1. Overall Performance Characteristics of the Lyra *C. difficile* assay Compared to Cell Culture Cytotoxicity Neutralization Assay

<table>
<thead>
<tr>
<th>Site</th>
<th>Platform</th>
<th>True Pos.</th>
<th>True Neg.</th>
<th>False Pos.</th>
<th>False Neg.</th>
<th>Sensitivity (95% C. I.)</th>
<th>Specificity (95% C. I.)</th>
<th>PPV (95% C. I.)</th>
<th>NPV (95% C. I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cepheid SmartCycler</td>
<td>11</td>
<td>102</td>
<td>12</td>
<td>0</td>
<td>100.0 (67.9 – 100.0)</td>
<td>89.5 (82.0 – 94.2)</td>
<td>47.8 (27.4 – 68.9)</td>
<td>100.0 (95.5 – 100.0)</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>11</td>
<td>102</td>
<td>12</td>
<td>0</td>
<td>100.0 (67.9 – 100.0)</td>
<td>89.5 (82.0 – 94.2)</td>
<td>47.8 (27.4 – 68.9)</td>
<td>100.0 (95.5 – 100.0)</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>11</td>
<td>105</td>
<td>9</td>
<td>0</td>
<td>100.0 (67.9 – 100.0)</td>
<td>92.1 (85.1 – 96.1)</td>
<td>55.0 (32.0 – 76.2)</td>
<td>100.0 (95.6 – 100.0)</td>
</tr>
<tr>
<td>2</td>
<td>Cepheid SmartCycler</td>
<td>19</td>
<td>89</td>
<td>9</td>
<td>3</td>
<td>86.4 (64.0 – 96.4)</td>
<td>90.1 (82.8 – 95.5)</td>
<td>67.9 (47.6 – 83.4)</td>
<td>96.7 (90.1 – 99.2)</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>21</td>
<td>90</td>
<td>8</td>
<td>1</td>
<td>95.5 (75.1 – 99.8)</td>
<td>91.8 (84.1 – 96.2)</td>
<td>72.4</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>20</td>
<td>93</td>
<td>5</td>
<td>2</td>
<td>90.9 (69.4 – 98.4)</td>
<td>94.9 (87.9 – 98.1)</td>
<td>80.0</td>
<td>97.9</td>
</tr>
<tr>
<td>3</td>
<td>Cepheid SmartCycler</td>
<td>42</td>
<td>295</td>
<td>14</td>
<td>5</td>
<td>89.4 (76.1 – 96.0)</td>
<td>95.5 (92.3 – 97.4)</td>
<td>75.0</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>44</td>
<td>294</td>
<td>10</td>
<td>3</td>
<td>93.6 (81.4 – 98.3)</td>
<td>96.7 (93.8 – 98.3)</td>
<td>81.5 (68.1 – 90.3)</td>
<td>99.0</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>44</td>
<td>297</td>
<td>12</td>
<td>3</td>
<td>93.6 (81.4 – 98.3)</td>
<td>96.1 (93.1 – 97.9)</td>
<td>78.6 (65.2 – 88.0)</td>
<td>99.0</td>
</tr>
<tr>
<td>Total</td>
<td>Cepheid SmartCycler</td>
<td>72</td>
<td>486</td>
<td>35</td>
<td>8</td>
<td>90.0 (80.7 – 95.3)</td>
<td>93.3 (90.7 – 95.2)</td>
<td>67.3 (57.5 – 75.9)</td>
<td>98.4 (96.7 – 99.2)</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>76</td>
<td>491</td>
<td>30</td>
<td>4</td>
<td>95.0 (87.0 – 98.4)</td>
<td>94.2 (91.8 – 96.0)</td>
<td>71.7</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>75</td>
<td>495</td>
<td>26</td>
<td>5</td>
<td>93.8 (85.4 – 97.7)</td>
<td>95.0 (92.7 – 96.7)</td>
<td>74.3</td>
<td>99.0</td>
</tr>
</tbody>
</table>
Table 2. Comparison of LYRA C. difficile assay on Different Thermocycling Platforms vs. Cell Culture Cytotoxicity Neutralization Assay.

<table>
<thead>
<tr>
<th>SPECIFICITY</th>
<th>ABI 7500 Fast DX</th>
<th>ABI QuantStudio DX</th>
<th>Cepheid SmartCycler II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI 7500 Fast DX</td>
<td>--</td>
<td>94.2% vs. 95.0%</td>
<td>94.2% vs. 93.3% p = 0.332</td>
</tr>
<tr>
<td>ABI QuantStudio DX</td>
<td>93.8% vs. 95.0% p = 1.000</td>
<td>--</td>
<td>95.0% vs. 93.3% p = 0.064</td>
</tr>
<tr>
<td>Cepheid SmartCycler II</td>
<td>90.0% vs. 95.0% p = 0.125</td>
<td>90.0% vs. 93.8% p = 0.250</td>
<td>--</td>
</tr>
</tbody>
</table>

Percentage from platform in row listed first; platform in the column listed second.
Table 3. Overall Performance Characteristics of the Lyra *C. difficile* assay Compared to Enhanced Toxigenic Culture

<table>
<thead>
<tr>
<th>Site</th>
<th>Platform</th>
<th>True Pos.</th>
<th>True Neg.</th>
<th>False Pos.</th>
<th>False Neg.</th>
<th>Sensitivity (95% C. I.)</th>
<th>Specificity (95% C. I.)</th>
<th>PPV (95% C. I.)</th>
<th>NPV (95% C. I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cepheid SmartCycler</td>
<td>20</td>
<td>98</td>
<td>3</td>
<td>4</td>
<td>83.3 (61.8 – 94.5)</td>
<td>97.0 (90.9 – 99.2)</td>
<td>87.0 (65.3 – 96.6)</td>
<td>96.1 (89.7 – 98.7)</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>21</td>
<td>99</td>
<td>2</td>
<td>3</td>
<td>87.5 (66.5 – 96.7)</td>
<td>98.0 (92.3 – 99.7)</td>
<td>91.3 (70.5 – 98.5)</td>
<td>97.1 (91.0 – 99.2)</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>20</td>
<td>101</td>
<td>0</td>
<td>4</td>
<td>83.3 (61.8 – 94.5)</td>
<td>100.0 (95.4 – 100.0)</td>
<td>100.0 (80.0 – 100.0)</td>
<td>96.2 (90.0 – 98.8)</td>
</tr>
<tr>
<td>2</td>
<td>Cepheid SmartCycler</td>
<td>24</td>
<td>90</td>
<td>4</td>
<td>2</td>
<td>92.3 (73.4 – 98.7)</td>
<td>95.7 (88.8 – 98.6)</td>
<td>85.7 (64.4 – 95.3)</td>
<td>97.8 (91.6 – 99.6)</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>25</td>
<td>90</td>
<td>4</td>
<td>1</td>
<td>96.2 (78.4 – 99.8)</td>
<td>95.7 (88.8 – 98.6)</td>
<td>86.2 (67.4 – 95.5)</td>
<td>98.9 (93.2 – 99.9)</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>24</td>
<td>93</td>
<td>1</td>
<td>2</td>
<td>92.3 (73.4 – 98.7)</td>
<td>98.9 (93.4 – 99.9)</td>
<td>96.0 (77.7 – 99.8)</td>
<td>97.9 (91.9 – 99.6)</td>
</tr>
<tr>
<td>3</td>
<td>Cepheid SmartCycler</td>
<td>48</td>
<td>286</td>
<td>8</td>
<td>14</td>
<td>77.4 (64.7 – 86.7)</td>
<td>97.3 (94.5 – 98.7)</td>
<td>85.7 (73.2 – 93.2)</td>
<td>95.3 (92.1 – 97.3)</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>54</td>
<td>294</td>
<td>0</td>
<td>8</td>
<td>87.1 (75.6 – 93.9)</td>
<td>100.0 (98.4 – 100.0)</td>
<td>100.0 (91.7 – 100.0)</td>
<td>97.4 (94.6 – 98.8)</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>52</td>
<td>290</td>
<td>4</td>
<td>10</td>
<td>83.9 (71.9 – 91.6)</td>
<td>98.6 (96.3 – 99.6)</td>
<td>92.9 (81.9 – 97.7)</td>
<td>96.7 (93.8 – 98.3)</td>
</tr>
<tr>
<td>Total</td>
<td>Cepheid SmartCycler</td>
<td>92</td>
<td>474</td>
<td>15</td>
<td>20</td>
<td>82.1 (73.5 – 88.5)</td>
<td>96.9 (94.9 – 98.2)</td>
<td>86.0 (77.6 – 91.7)</td>
<td>96.0 (93.7 – 97.1)</td>
</tr>
<tr>
<td></td>
<td>ABI 7500 Fast DX</td>
<td>100</td>
<td>483</td>
<td>6</td>
<td>12</td>
<td>89.3 (81.7 – 94.1)</td>
<td>98.8 (97.2 – 99.5)</td>
<td>94.3 (87.6 – 97.7)</td>
<td>97.6 (95.7 – 98.7)</td>
</tr>
<tr>
<td></td>
<td>ABI Quant Studio DX</td>
<td>96</td>
<td>484</td>
<td>5</td>
<td>16</td>
<td>85.7 (77.5 – 91.4)</td>
<td>99.0 (97.4 – 99.6)</td>
<td>95.0 (88.3 – 98.2)</td>
<td>96.8 (94.7 – 98.1)</td>
</tr>
</tbody>
</table>
Table 4. Comparison of LYRA *C. difficile* assay on Different Thermocycling Platforms vs. Enhanced Toxigenic Culture.

<table>
<thead>
<tr>
<th>SENSITIVITY</th>
<th>ABI 7500 Fast DX</th>
<th>ABI QuantStudio DX</th>
<th>Cepheid SmartCycler II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI 7500 Fast DX</td>
<td>--</td>
<td>98.8% vs. 99.0%</td>
<td>98.8% vs. 96.9%</td>
</tr>
<tr>
<td>ABI QuantStudio DX</td>
<td>85.7% vs. 89.3%</td>
<td>--</td>
<td>99.0% vs. 96.9%</td>
</tr>
<tr>
<td>Cepheid SmartCycler II</td>
<td>82.1% vs. 89.3%</td>
<td>82.1% vs. 85.7%</td>
<td>--</td>
</tr>
</tbody>
</table>

Percentage from platform in row listed first; platform in the column listed second.

*Significant difference in performance of LYRA *C. difficile* assay between test platforms