Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Clinical Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Evaluation of autoSCAN-W/A automated microbiology system for the identification of non-glucose-fermenting gram-negative bacilli.

F C Tenover, T S Mizuki, L G Carlson
F C Tenover
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T S Mizuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L G Carlson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We evaluated the ability of the autoSCAN-W/A (MicroScan Division, Baxter Healthcare Corporation, West Sacramento, Calif.), in conjunction with the dried colorimetric Neg ID type 2 panel (DCP) and new rapid fluorometric Neg ID panel (RFP), to identify non-glucose-fermenting gram-negative bacilli by challenging the system with 310 previously identified reference strains. Of these 310 isolates, 286 organisms were in the DCP data base and 269 were in the RFP data base. Use of the DCP panels resulted in 118 (41.3%) correct and 64 (22.4%) incorrect first choice identifications at greater than or equal to 85% probability, 61 (21.3%) low-probability identifications, and 43 (15.0%) reports of unidentified organisms. The RFP system reported 135 (50.1%) correct and 25 (9.3%) incorrect identifications at greater than or equal to 85% probability and 109 (40.5%) low-probability identifications. Unidentified isolates (DCP system only) and isolates producing low-probability first choice identifications (both systems) required supplementary biochemical testing. Over half (37 of 64 [57.8%]) of the DCP misidentifications were due to four commonly isolated, saccharolytic organisms (Alcaligenes xylosoxidans subsp. xylosoxidans, Pseudomonas putida, Pseudomonas fluorescens, and Xanthomonas maltophilia), while 7 of 25 (28%) of misidentifications in the RFP system were due to P. fluorescens. Of note, the RFP system identified non-glucose-fermenting gram-negative bacilli within 2 h of panel inoculation, allowing additional conventional biochemical tests to be set up the same day on low-probability isolates, whereas only 13.5% of the DCPs could be read at 18 h, with the remainder requiring 42 h of incubation before reading. When organism identifications were recalculated with the updated RFP data base and revised software, only 8.1% of all 310 isolates were misidentified at greater than or equal to 85% probability while 77.1% of the isolates were now correctly reported at this same high probability.

PreviousNext
Back to top
Download PDF
Citation Tools
Evaluation of autoSCAN-W/A automated microbiology system for the identification of non-glucose-fermenting gram-negative bacilli.
F C Tenover, T S Mizuki, L G Carlson
Journal of Clinical Microbiology Jul 1990, 28 (7) 1628-1634; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Clinical Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of autoSCAN-W/A automated microbiology system for the identification of non-glucose-fermenting gram-negative bacilli.
(Your Name) has forwarded a page to you from Journal of Clinical Microbiology
(Your Name) thought you would be interested in this article in Journal of Clinical Microbiology.
Share
Evaluation of autoSCAN-W/A automated microbiology system for the identification of non-glucose-fermenting gram-negative bacilli.
F C Tenover, T S Mizuki, L G Carlson
Journal of Clinical Microbiology Jul 1990, 28 (7) 1628-1634; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JCM
  • Editor in Chief
  • Board of Editors
  • Editor Conflicts of Interest
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Resources for Clinical Microbiologists
  • Ethics
  • Contact Us

Follow #JClinMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0095-1137; Online ISSN: 1098-660X