Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Clinical Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR.

P Vannuffel, J Gigi, H Ezzedine, B Vandercam, M Delmee, G Wauters, J L Gala
P Vannuffel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Gigi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Ezzedine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Vandercam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Delmee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Wauters
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Gala
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

In Staphylococcus aureus, mecA and femA are the genetic determinants of methicillin resistance. By using a multiplex PCR strategy, 310- and 686-bp regions of the mecA and femA genes, respectively, were coamplified to identify susceptible (lacking mecA) and resistant (mecA+) staphylococci and to differentiate S. aureus (femA+) from coagulase-negative staphylococci (lacking femA). A third staphylococcal genomic sequence, corresponding to IS431 and spanning 444 bp, was used as a PCR control. One hundred sixty-five staphylococcal strains were tested. All 72 methicillin-resistant strains were found to be mecA+, and 92 of the 93 susceptible isolates lacked mecA. Only one coagulase-negative Staphylococcus isolate carrying the mecA gene was highly susceptible to oxacillin. The femA determinant was a unique feature of S. aureus; it was found in 100% of the S. aureus strains tested but was undetectable in all of the coagulase-negative staphylococci tested. The possibility of directly detecting the mecA and femA genes in blood samples was also investigated. After two amplification steps, a sensitivity of 50 microorganisms per ml of freshly collected spiked blood was achieved. In conclusion, coamplification of mecA and femA determinants proved to be very reliable both for rapid detection of methicillin resistance and differential diagnosis between S. aureus and other staphylococci. This technique, which can be successfully performed with blood samples, could be a useful tool in the diagnosis and treatment monitoring of staphylococcal infections.

PreviousNext
Back to top
Download PDF
Citation Tools
Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR.
P Vannuffel, J Gigi, H Ezzedine, B Vandercam, M Delmee, G Wauters, J L Gala
Journal of Clinical Microbiology Nov 1995, 33 (11) 2864-2867; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Clinical Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR.
(Your Name) has forwarded a page to you from Journal of Clinical Microbiology
(Your Name) thought you would be interested in this article in Journal of Clinical Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR.
P Vannuffel, J Gigi, H Ezzedine, B Vandercam, M Delmee, G Wauters, J L Gala
Journal of Clinical Microbiology Nov 1995, 33 (11) 2864-2867; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JCM
  • Editor in Chief
  • Board of Editors
  • Editor Conflicts of Interest
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Resources for Clinical Microbiologists
  • Ethics
  • Contact Us

Follow #JClinMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

 

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0095-1137; Online ISSN: 1098-660X