Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Clinical Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Bacteriology

Detection of Virulence-Associated Genes Not Useful for Discriminating between Invasive and Commensal Staphylococcus epidermidis Strains from a Bone Marrow Transplant Unit

Holger Rohde, Matthias Kalitzky, Nicolaus Kröger, Stefanie Scherpe, Matthias A. Horstkotte, Johannes K.-M. Knobloch, Axel R. Zander, Dietrich Mack
Holger Rohde
1Institut für Infektionsmedizin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: rohde@uke.uni-hamburg.de
Matthias Kalitzky
1Institut für Infektionsmedizin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolaus Kröger
2Zentrum für Knochenmarktransplantation, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefanie Scherpe
1Institut für Infektionsmedizin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthias A. Horstkotte
1Institut für Infektionsmedizin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johannes K.-M. Knobloch
1Institut für Infektionsmedizin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Axel R. Zander
2Zentrum für Knochenmarktransplantation, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dietrich Mack
1Institut für Infektionsmedizin
3Medical Microbiology and Infectious Diseases, The Clinical School, University of Wales Swansea, Swansea, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JCM.42.12.5614-5619.2004
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Because of their biofilm-forming capacity, invasive Staphylococcus epidermidis isolates, which cause the majority of nosocomial catheter-related bloodstream infections (BSIs), are thought to be selected at the time of catheter insertion from a population of less virulent commensal strains. This fact allows the prediction that invasive and contaminating strains can be differentiated via detection of virulence-associated genes. However, the hospital environment may pave the way for catheter-related infections by promoting a shift in the commensal bacterial population toward strains with enhanced virulence. The distribution of virulence-associated genes (icaADBC, aap, atlE, bhp, fbe, embp, mecA, IS256, and IS257), polysaccharide intercellular adhesin synthesis, and biofilm formation were investigated in S. epidermidis strains from independent episodes of catheter-related BSIs in individuals who have received bone marrow transplantation (BMT). The results were compared with those obtained for commensal S. epidermidis isolates from hospitalized patients after BMT and from healthy individuals, respectively. The clonal relationships of the strains were investigated by pulsed-field gel electrophoresis. icaADBC, mecA, and IS256 were significantly more prevalent in BSI isolates than in commensal isolates from healthy individuals. However, the prevalence of any of the genes in clonally independent, endogenous commensal strains from BMT patients did not differ from that in invasive BSI strains. icaADBC and methicillin resistance, factors important for the establishment of catheter-related infections, already ensure survival of the organisms in their physiological habitat in the hospital environment, resulting in a higher probability of contamination of indwelling medical devices with virulent S. epidermidis strains. The dynamics of S. epidermidis populations reveal that detection of icaADBC and mecA is not suitable for discriminating invasive from contaminating S. epidermidis strains.

  • Copyright © 2004 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Detection of Virulence-Associated Genes Not Useful for Discriminating between Invasive and Commensal Staphylococcus epidermidis Strains from a Bone Marrow Transplant Unit
Holger Rohde, Matthias Kalitzky, Nicolaus Kröger, Stefanie Scherpe, Matthias A. Horstkotte, Johannes K.-M. Knobloch, Axel R. Zander, Dietrich Mack
Journal of Clinical Microbiology Dec 2004, 42 (12) 5614-5619; DOI: 10.1128/JCM.42.12.5614-5619.2004

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Clinical Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Detection of Virulence-Associated Genes Not Useful for Discriminating between Invasive and Commensal Staphylococcus epidermidis Strains from a Bone Marrow Transplant Unit
(Your Name) has forwarded a page to you from Journal of Clinical Microbiology
(Your Name) thought you would be interested in this article in Journal of Clinical Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Detection of Virulence-Associated Genes Not Useful for Discriminating between Invasive and Commensal Staphylococcus epidermidis Strains from a Bone Marrow Transplant Unit
Holger Rohde, Matthias Kalitzky, Nicolaus Kröger, Stefanie Scherpe, Matthias A. Horstkotte, Johannes K.-M. Knobloch, Axel R. Zander, Dietrich Mack
Journal of Clinical Microbiology Dec 2004, 42 (12) 5614-5619; DOI: 10.1128/JCM.42.12.5614-5619.2004
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

bacteremia
Bacterial Proteins
Staphylococcal Infections
Staphylococcus epidermidis

Related Articles

Cited By...

About

  • About JCM
  • Editor in Chief
  • Board of Editors
  • Editor Conflicts of Interest
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Resources for Clinical Microbiologists
  • Ethics
  • Contact Us

Follow #JClinMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

 

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0095-1137; Online ISSN: 1098-660X