Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Clinical Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
CASE REPORTS

Transmission of Coccidioidomycosis to a Human via a Cat Bite

Adriana Gaidici, Michael A. Saubolle
Adriana Gaidici
1Infectious Diseases Private Practice, Banner Good Samaritan Medical Center, Banner Health System, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael A. Saubolle
2Laboratory Sciences of Arizona/Banner Health System
3University of Arizona College of Medicine, Phoenix/Tucson, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mike.saubolle@bannerhealth.com
DOI: 10.1128/JCM.01860-08
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We report an unusual case of coccidioidomycosis in the arm of a veterinary assistant without pulmonary symptoms. The patient had been bitten on the hand by a cat which was later diagnosed with disseminated disease. The patient responded to fluconazole therapy and remained asymptomatic at 2 months after cessation of therapy.

CASE REPORT

A 37-year-old veterinary technical assistant presented to an emergency department within the Phoenix, AZ, metropolitan area, complaining of an initial right thumb swelling. The assistant had been bitten in the area that developed the swelling by a skinny, stray cat she was examining at an animal clinic approximately 2 weeks previously. The bite wound at first formed only a small eschar but then progressed to increased erythema, swelling, and tenderness. The patient had originally been started on doxycycline as an outpatient, but her symptoms continued to progress. The patient now presented with erythema involving her whole right hand and with tender erythematous streaking extending to her right axilla. She denied any other significant medical history, except for allergy to penicillin and to trimethoprim-sulfamethoxazole, manifested by severe rash.

Physical examination revealed an afebrile female in no acute distress; her heart rate and blood pressure were both within normal limits. Her lungs were clear according to auscultation. Her physical examination was remarkable only for erythema and swelling of the right hand, lymphangitis of the right upper extremity, extending from the hand to the axilla, and tender lymphadenopathy in the right axilla. She had a white cell count of 7.7 × 103/mm3, a hemoglobin level of 11 g/dl, a platelet count of 218 × 103/mm3, and a creatinine level of 0.9 mg/dl. She was admitted for further diagnostic workup.

The patient was taken to the operating room shortly after admission for evaluation by a hand surgeon. Magnetic resonance imaging studies showed no osteomyelitis of the right upper extremity. Exploratory surgery revealed extreme swelling of the right arm but minimal purulence. Separate tissue specimens representative of the inflamed area were submitted to the infectious diseases laboratory for bacterial, mycobacterial, and fungal cultures and staining and to histopathology for microscopic examination of stained preparations.

The initial stained preparations (Gram stain for bacteria, Kinyoun stain for mycobacteria, and calcofluor white stain for fungi) did not reveal any organisms. Histopathology showed only superficial and deep perivascular dermatitis with mixed inflammatory cells, including scattered eosinophils. Granulomatous inflammation was absent. The patient was started on vancomycin (1 g administered intravenously every 12 h) and ceftriaxone (2 g administered intravenously daily) immediately after surgery.

The patient's condition did not improve with therapy, and tenderness, swelling, and erythema of the right hand continued to progress. The patient was taken back to surgery, but only the same atypical swelling was noted. Bacterial and mycobacterial cultures from the first surgery did not isolate any bacteria, but a waxy mold morphologically resembling a Coccidioides species was recognized on the fifth day after submission of the tissue specimens. The isolate was identified the next day as a Coccidioides sp. by using a genus-specific ribosomal probe (Accuprobe; GenProbe, San Diego, CA) directly on the isolate. Two separate tissue specimens yielded the same isolate.

The antibacterial antibiotics were discontinued, and the patient was started on fluconazole (400 mg daily). The patient's condition improved dramatically, and she was discharged from the hospital on the sixth day postadmission. Serum enzyme immunoassay serology results for Coccidioides immunoglobulin M and G antibodies were negative at discharge and at 6 weeks. The patient remained symptom free and was taken off fluconazole therapy after 2 months.

On history, the cat had died shortly after having bitten the patient. A necropsy was performed, and splenic masses were evaluated by histopathology. The veterinary pathologist noted numerous “pyogranulomas” with massive numbers of spherules present. The final diagnosis was multifocal granulomatous splenitis and disseminated disease, with Coccidioides spp. as the etiologic organisms. No additional studies were performed with the cat.

Coccidioidomycosis results from infection by fungus species endemic in the arid areas of the southwestern United States, as well as parts of Mexico and South America (3, 9). The etiologic agents are now considered two separate species in the genus Coccidioides, Coccidioides immitis (previously, the California strains) and Coccidioides posadasii (previously, the non-California strains) (2). The two species are difficult to separate phenotypically. Both species are dimorphic in that they produce mycelia with interspersed heavy-walled arthroconidia in the environment (soil) and in cultures and round, variably sized, structures called spherules with endospores in animal host tissue.

Infection is most commonly acquired via inhalation of the easily aerosolized arthroconidia, although traumatic percutaneous implantation can occur rarely (12). Transmission of coccidioidomycosis to humans from inanimate objects has been reported in a limited number of cases (11). Fomites implicated in transmission have included bales of cotton, hay, grain, fruit, animal products, and Native American relics originating in areas where Coccidioides spp. are endemic. Except in rare cases, coccidioidomycosis is not thought to spread from person to person in its tissue spherule-endospore phase (5). There have been only a few reports of transmission of coccidioidomycosis by tissue transplantation to recipients from donors harboring the organism and one report of intrauterine transmission during pregnancy (1, 6).

Coccidioides spp. may infect a wide variety of mammals (dogs, cats, cattle, sheep, swine, equine animals, armadillos, sea lions, and dolphins), as well as some reptiles, although they have not been shown to infect birds (6, 10). Transmission of coccidioidomycosis from animals to humans has almost never been reported. There was a single report of possible acquisition of coccidioidomycosis via inhalation of tissue-phase organisms due to manipulation and aerosolization of endospores during necropsy of a horse with disseminated disease (4). To our knowledge, there have been no reports of transmission of coccidioidomycosis directly from nonhumans to humans via bites, and in a recent review of the microbiology of animal bites, Coccidioides spp. were not listed (7). Our case seems to be unique in the mode of transmission of coccidioidomycosis from a cat to a human. As endospores have been shown to be as virulent as arthroconidia in animal experiments, we postulate that transmission occurred through the bite of the cat with a documented florid disseminated disease which probably had spherules and/or endospores present in its saliva or other oral or respiratory secretions (8).

ACKNOWLEDGMENTS

No financial support was received for this report.

We thank Demosthenes Pappagianis for reviewing the manuscript and providing suggestions for its preparation.

There are no potential conflicts of interest for A.G. or M.A.S.

FOOTNOTES

    • Received 25 September 2008.
    • Accepted 24 November 2008.
  • Copyright © 2009 American Society for Microbiology

REFERENCES

  1. 1.↵
    Charlton, V., K. Ramsdell, and S. Sehring. 1999. Intrauterine transmission of coccidioidomycosis. Pediatr. Infect. Dis. J.18:561-563.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    Fisher, M. C., G. L. Koenig, T. J. White, and J. W. Taylor. 2002. Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis.Mycologia94:73-84.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    Galgiani, J. N., N. M. Ampel, J. E. Blair, A. Catanzaro, R. H. Johnson, D. A. Stevens, and P. L. Williams. 2005. Coccidioidomycosis. Clin. Infect. Dis.41:1217-1223.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    Kohn, G. J., S. R. Linne, C. M. Smith, and P. D. Hoeprich. 1992. Acquisition of coccidioidomycosis at necropsy by inhalation of coccidioidal endospores. Diagn. Microbiol. Infect. Dis.15:527-530.
    OpenUrlCrossRefPubMed
  5. 5.↵
    Laniado-Laborin, R. 2007. Expanding understanding of epidemiology of coccidioidomycosis in the western hemisphere. Ann. N. Y. Acad. Sci.1111:19-34.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    Miller, M. B., R. Hendren, and P. H. Gilligan. 2004. Posttransplantation disseminated coccidioidomycosis acquired from donor lungs. J. Clin. Microbiol.42:2347-2349.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    Murphy, E. 2008. Microbiology of animal bites. Clin. Microbiol. Newsl.30:47-50.
    OpenUrlCrossRef
  8. 8.↵
    Pappagianis, D., C. E. Smith, and G. S. Kobayashi. 1956. Relationship of the in vivo form of Coccidioides immitis to virulence. J. Infect. Dis.98:312-319.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    Saubolle, M. A., P. P. McKellar, and D. Sussland. 2007. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J. Clin. Microbiol.45:26-30.
    OpenUrlFREE Full Text
  10. 10.↵
    Shubitz, L. F. 2007. Comparative aspects of coccidioidomycosis in animals and humans. Ann. N. Y. Acad. Sci.1111:395-403.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    Stagliano, D., J. Epstein, and P. Hickey. 2007. Fomite-transmitted coccidioidomycosis in an immunocompromised child. Ped. Infect. Dis. J.26:454-456.
    OpenUrlCrossRef
  12. 12.↵
    Wilson, J. W., C. E. Smith, and O. A. Plunkett. 1953. Primary cutaneous coccidioidomycosis: the criteria for diagnosis and a report of a case. Calif. Med.79:233-239.
    OpenUrlPubMed
PreviousNext
Back to top
Download PDF
Citation Tools
Transmission of Coccidioidomycosis to a Human via a Cat Bite
Adriana Gaidici, Michael A. Saubolle
Journal of Clinical Microbiology Feb 2009, 47 (2) 505-506; DOI: 10.1128/JCM.01860-08

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Clinical Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Transmission of Coccidioidomycosis to a Human via a Cat Bite
(Your Name) has forwarded a page to you from Journal of Clinical Microbiology
(Your Name) thought you would be interested in this article in Journal of Clinical Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Transmission of Coccidioidomycosis to a Human via a Cat Bite
Adriana Gaidici, Michael A. Saubolle
Journal of Clinical Microbiology Feb 2009, 47 (2) 505-506; DOI: 10.1128/JCM.01860-08
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • CASE REPORT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Info & Metrics
  • PDF

KEYWORDS

Bites and Stings
Cat Diseases
coccidioidomycosis

Related Articles

Cited By...

About

  • About JCM
  • Editor in Chief
  • Board of Editors
  • Editor Conflicts of Interest
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Resources for Clinical Microbiologists
  • Ethics
  • Contact Us

Follow #JClinMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

 

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0095-1137; Online ISSN: 1098-660X