Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Clinical Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Mycology

Rapid Diagnosis of Azole-Resistant Aspergillosis by Direct PCR Using Tissue Specimens

Jan W. M. van der Linden, Eveline Snelders, Jan P. Arends, Simon M. Daenen, Willem J. G. Melchers, Paul E. Verweij
Jan W. M. van der Linden
1Department of Medical Microbiology, Radboud University Nijmegen Medical Center
2Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eveline Snelders
1Department of Medical Microbiology, Radboud University Nijmegen Medical Center
2Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan P. Arends
3Departments of Medical Microbiology
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simon M. Daenen
4Hematology, University Medical Center Groningen, Groningen, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Willem J. G. Melchers
1Department of Medical Microbiology, Radboud University Nijmegen Medical Center
2Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul E. Verweij
1Department of Medical Microbiology, Radboud University Nijmegen Medical Center
2Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: p.verweij@mmb.umcn.nl
DOI: 10.1128/JCM.02221-09
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We report the use of PCR techniques on a formalin-fixed and paraffin-embedded tissue specimen for direct detection of one dominant azole resistance mechanism in a case of disseminated invasive aspergillosis. Rapid detection of mutations associated with azole resistance directly in tissue significantly reduces diagnostic delay.

Invasive infections due to Aspergillus fumigatus are associated with significant morbidity and mortality, although the prognosis of patients with invasive aspergillosis has improved with the clinical use of mold-active antifungal azoles, most notably voriconazole (9, 11). However, the survival of patients may be threatened by the emergence of azole resistance of aspergilli (1, 7, 13). Resistance is commonly due to point mutations in the cyp51A gene, which is the target for antifungal azoles (1, 4, 8, 13, 14). The isolates commonly exhibit a cross-resistant phenotype (4), and patients with azole-resistant disease may fail azole therapy (1, 7, 10, 12). One problem in the management of azole-resistant aspergillosis is the early detection of resistance as cultures are negative in up to 50% of patients with focal pulmonary lesions (2), and in vitro susceptibility testing takes at least 5 to 7 days to complete. In this report, molecular tools were utilized to rapidly confirm the diagnosis of disseminated azole-resistant aspergillosis.

Case report.

A 60-year-old man was diagnosed with acute myeloid leukemia and underwent an allogeneic hematopoietic stem cell transplantation. Six months later, he developed grade 2 to 3 graft-versus-host disease (GvHD) of the gastrointestinal tract and skin. He was treated with 1 mg prednisone/kg/day plus 3 mg b.i.d. Entocort. His neutrophil count was 0.77 × 109/liter. Diarrhea responded quickly. However, 10 days later, he developed fever, and high-resolution computed tomography (CT) of the thorax showed the presence of multiple nodular pulmonary infiltrates. Aspergillus fumigatus was cultured from the sputum, and circulating galactomannan was detected in serum. Under the suspicion of invasive pulmonary aspergillosis, treatment with voriconazole was started immediately, and the prednisone dose was halved and, within a few weeks, further reduced to a maintenance dose of 5 mg daily. The GvHD did not relapse, but as the clinical condition of the patient did not improve and sputum cultures remained positive with A. fumigatus, caspofungin was added. One week after the start of the antifungal therapy, paresis of the abducens nerve developed, and brain magnetic resonance imaging (MRI) showed multiple lesions. A brain biopsy was performed, and histological examination showed septate hyphae (Fig. 1); however, cultures remained negative. The sputum isolate was resistant to itraconazole and voriconazole and intermediate susceptible to posaconazole (Table 1) (13). As the cerebral lesion might be due to azole-resistant A. fumigatus, it was decided to replace voriconazole by liposomal amphotericin B. The patient again developed fever, and posaconazole was added to the treatment regimen.

FIG. 1.
  • Open in new tab
  • Download powerpoint
FIG. 1.

Histology of the brain biopsy specimen showing septate hyphae (PAS staining, ×400 magnification).

View this table:
  • View inline
  • View popup
TABLE 1.

Results of the diagnostic assays for the clinical specimens obtained from the patient and for three controls

We utilized the sputum isolate and three formalin-fixed and paraffin-embedded tissue sections from the brain biopsy for identification of the resistance mechanism. Amplification of the 28S ribosomal DNA confirmed the presence of Aspergillus in the biopsy samples. Sequence-based analysis of the cyp51A gene (using reference sequence of strain AF338659 from GenBank) of the sputum isolate showed a substitution of leucine for histidine at codon 98 and a 34-bp tandem repeat in the gene promoter region (TR+L98H). The morphological species identification of A. fumigatus was confirmed by sequencing of the highly conserved β-tubulin gene (7). Two PCR assays (Table 2) targeted at the tandem repeat and the mutation at codon 98 were performed directly on the brain biopsy specimen and were both positive (Table 1). DNA was extracted using proteinase K and the Qiagen EZ1 robot (Qiagen, The Netherlands). For the real-time detection of L98H, a 122-bp region was amplified, bridging codon 98 of the cyp51A gene by using a forward primer and a reverse primer (Table 2). Using hybridization probes, the wild-type L98 codon could be differentiated from the mutated L98H codon. A sensor probe was designed to span the mutation and to be separated from an anchor probe by 1 nucleotide. The melting temperature (Tm ) of the sensor probe was approximately 6.6°C lower than that of the anchor probe; a wild-type DNA template will result in a mismatch giving a lower Tm than that observed for the mutated DNA template. The LightCycler FastStart DNA Master HybProbe reaction mix was used.

View this table:
  • View inline
  • View popup
TABLE 2.

PCR assays targeted at the tandem repeat and the mutation at codon 98

To detect the 34-bp repetitive insertion, a TaqMan probe (TR) (Table 2) was designed to bind to the last 13 bp and the first 9 bp of the repetitive insertion, thereby binding specifically to a mutated DNA template. To control for a successful amplification of the 110-bp fragment of the promoter region by a forward primer and a reverse primer of the cyp51A gene, an additional TaqMan probe (wild-type sequence) (Table 2) was designed to detect the gene in general, independent from the presence of the repetition. Besides that, sequence analysis of a 160-bp fragment of the cyp51A gene from the biopsy sample confirmed the presence of the TR in the A. fumigatus in the tissue sample.

The clinical condition of the patient gradually improved, and imaging showed regression of the pulmonary and brain lesions. Liposomal amphotericin B and caspofungin therapy was discontinued after 12 weeks. Posaconazole was continued, and a plasma level of 1.7 mg/liter was achieved. Repeat CT of the brain showed further improvement of the lesions 6 months after initiation of antifungal therapy.

Azole resistance has emerged in The Netherlands, and the prevalence among clinical A. fumigatus isolates was 6% in 2007 (7). Resistance significantly complicates the treatment of invasive aspergillosis, as alternative drugs with efficacy similar to that of voriconazole in central nervous system aspergillosis are not available (5, 6, 10). The TR+L98H resistance mechanism was found to be present in more than 90% of Dutch azole-resistant A. fumigatus isolates and was always associated with a multi-azole-resistant phenotype (7, 10, 12). In an experimental model of disseminated aspergillosis, the efficacy of posaconazole against TR+L98H isolates was reduced by 50% compared to that of wild-type isolates (3). Furthermore, it remains unclear if adequate posaconazole levels can be achieved at the site of infection in the brain. Nevertheless, as there were no oral alternatives, we used posaconazole for step-down therapy in our patient and were able to obtain high plasma levels. The lesions continued to improve during posaconazole monotherapy.

The detection of resistance in invasive aspergillosis may be problematic, as positive cultures are required to test for a resistant phenotype, while the infecting isolate is obtained in only a minority of cases. However, even if Aspergillus is cultured, adequate treatment may be delayed for 5 to 7 days due to the time needed for MIC results to become available. Given a median survival of central nervous system aspergillosis of only 10 days (6), this is an unacceptable delay. Although in our patient resistance was expected early due to MIC testing of the sputum isolate, we were able to diagnose azole-resistant disseminated aspergillosis directly in the brain biopsy by using specifically designed real-time PCR assays. This appears to be a feasible approach, as mutations in the cyp51A gene are the primary mechanism of azole resistance in A. fumigatus, and the TR+L98H is the dominant change in Dutch azole-resistant A. fumigatus isolates (7). Provided that the resistance mechanism is known, molecular techniques are suitable to detect multiple resistance mechanisms simultaneously.

ACKNOWLEDGMENTS

P.E.V. has received research grants from Bio-Rad, Pfizer, Gilead, Schering-Plough, Merck, and Basilea. Other authors have no conflicts of interest.

FOOTNOTES

    • Received 13 November 2009.
    • Returned for modification 17 December 2009.
    • Accepted 19 January 2010.
  • Copyright © 2010 American Society for Microbiology

REFERENCES

  1. 1.↵
    Howard, S. J., D. Cerar, M. J. Anderson, A. Albarrag, M. C. Fisher, A. C. Pasqualotto, M. Laverdiere, M. C. Arendrup, D. S. Perlin, and D. W. Denning. 2009. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg. Infect. Dis. 15 : 1068-1076.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    Levine, S. J. 1992. An approach to the diagnosis of pulmonary infections in immunosuppressed patients. Semin. Respir. Infect. 7 : 81-95.
    OpenUrlPubMed
  3. 3.↵
    Mavridou, E., R. J. Brüggemann, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij. 2010. Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene. Antimicrob. Agents Chemother. 54 : 860-865.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    Mellado, E., G. Garcia-Effron, L. Alcazar-Fuoli, W. J. G. Melchers, P. E. Verweij, M. Cuenca-Estrella, and J. L. Rodriguez-Tudela. 2007. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Chemother. 51 : 1897-1904.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    Schwartz, S., M. Ruhnke, P. Ribaud, L. Corey, T. Driscoll, O. A. Cornely, U. Schuler, I. Lutsar, P. Troke, and E. Thiel. 2005. Improved outcome in central nervous system aspergillosis, using voriconazole treatment. Blood 106 : 2641-2645.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    Schwartz, S., M. Ruhnke, P. Ribaud, E. Reed, P. Troke, and E. Thiel. 2007. Poor efficacy of amphotericin B-based therapy in CNS aspergillosis. Mycoses 50 : 196-200.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    Snelders, E., H. A. L. van der Lee, J. Kuijpers, A. J. M. M. Rijs, J. Varga, R. A. Samson, E. Mellado, W. J. G. Melchers, and P. E. Verweij. 2008. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 5 : e219.
    OpenUrlCrossRefPubMed
  8. 8.↵
    Snelders, E., R. A. G. Huis in ′t Veld, A. J. M. M. Rijs, G. H. J. Kema, W. J. G. Melchers, and P. E. Verweij. 2009. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl. Environ. Microbiol. 75 : 4053-4057.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    Upton, A., K. A. Kirby, P. Carpenter, M. Boeckh, and K. A. Marr. 2007. Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin. Infect. Dis. 44 : 531-540.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    van der Linden, J. W. M., R. R. Jansen, D. Bresters, C. Visser, S. Geerlins, E. J. Kuijper, W. J. G. Melchers, and P. E. Verweij. 2009. Azole resistant central nervous system aspergillosis. Clin. Infect. Dis. 48 : 1111-1113.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    van ′t Hek, L. G., P. E. Verweij, C. M. Weemaes, R. Van Dalen, J. B. Yntema, and J. F. Meis. 1998. Successful treatment with voriconazole of invasive aspergillosis in chronic granulomatous disease. Am. J. Respir. Crit. Care Med. 157 : 1694-1696.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    Verweij, P. E., E. Mellado, and W. J. Melchers. 2007. Multiple-triazole-resistant aspergillosis. N. Engl. J. Med. 356 : 1481-1483.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    Verweij, P. E., S. J. Howard, W. J. G. Melchers, and D. W. Denning. 2009. Azole resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist. Updat. 12 : 141-147.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    Verweij, P. E., E. Snelders, G. H. J. Kema, E. Mellado, and W. J. G. Melchers. 2009. Azole-resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect. Dis. 9 : 789-795.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top
Download PDF
Citation Tools
Rapid Diagnosis of Azole-Resistant Aspergillosis by Direct PCR Using Tissue Specimens
Jan W. M. van der Linden, Eveline Snelders, Jan P. Arends, Simon M. Daenen, Willem J. G. Melchers, Paul E. Verweij
Journal of Clinical Microbiology Mar 2010, 48 (4) 1478-1480; DOI: 10.1128/JCM.02221-09

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Clinical Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Rapid Diagnosis of Azole-Resistant Aspergillosis by Direct PCR Using Tissue Specimens
(Your Name) has forwarded a page to you from Journal of Clinical Microbiology
(Your Name) thought you would be interested in this article in Journal of Clinical Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Rapid Diagnosis of Azole-Resistant Aspergillosis by Direct PCR Using Tissue Specimens
Jan W. M. van der Linden, Eveline Snelders, Jan P. Arends, Simon M. Daenen, Willem J. G. Melchers, Paul E. Verweij
Journal of Clinical Microbiology Mar 2010, 48 (4) 1478-1480; DOI: 10.1128/JCM.02221-09
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • Case report.
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

antifungal agents
aspergillosis
Aspergillus
azoles
Clinical Laboratory Techniques
Drug Resistance, Fungal
polymerase chain reaction

Related Articles

Cited By...

About

  • About JCM
  • Editor in Chief
  • Board of Editors
  • Editor Conflicts of Interest
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Resources for Clinical Microbiologists
  • Ethics
  • Contact Us

Follow #JClinMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

 

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0095-1137; Online ISSN: 1098-660X