Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Clinical Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JCM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Letter to the Editor

The Pseudomonas aeruginosa Population among Cystic Fibrosis Patients in Quebec, Canada: a Disease Hot Spot without Known Epidemic Isolates

Julie Jeukens, Luca Freschi, Irena Kukavica-Ibrulj, Jean-Guillaume Emond-Rheault, Christian Allard, Jean Barbeau, André Cantin, Steve J. Charette, Eric Déziel, François Malouin, Julie Milot, Dao Nguyen, Clara Popa, Brian Boyle, Roger C. Levesque
Geoffrey A. Land, Editor
Julie Jeukens
aInstitute for Integrative and Systems Biology (IBIS), Université Laval, Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luca Freschi
aInstitute for Integrative and Systems Biology (IBIS), Université Laval, Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irena Kukavica-Ibrulj
aInstitute for Integrative and Systems Biology (IBIS), Université Laval, Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Guillaume Emond-Rheault
aInstitute for Integrative and Systems Biology (IBIS), Université Laval, Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Allard
bCSSS de Chicoutimi, Chicoutimi, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean Barbeau
cUniversité de Montréal, Montreal, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
André Cantin
dUniversité de Sherbrooke, Sherbrooke, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steve J. Charette
aInstitute for Integrative and Systems Biology (IBIS), Université Laval, Quebec City, QC, Canada
eInstitut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric Déziel
fINRS Institut Armand-Frappier, Laval, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eric Déziel
François Malouin
dUniversité de Sherbrooke, Sherbrooke, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for François Malouin
Julie Milot
eInstitut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dao Nguyen
gMcGill University, Montreal, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clara Popa
hCentre intégré de santé et de services sociaux de l'Abitibi-Témiscamingue, Hôpital de Rouyn-Noranda, Rouyn-Noranda, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian Boyle
aInstitute for Integrative and Systems Biology (IBIS), Université Laval, Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger C. Levesque
aInstitute for Integrative and Systems Biology (IBIS), Université Laval, Quebec City, QC, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Geoffrey A. Land
Carter BloodCare & Baylor University Medical Center
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JCM.02019-18
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

LETTER

The Canadian province of Quebec has prevalence rates of cystic fibrosis (CF) that are among the highest in the world, with an average of 1 in 2,500 newborns (1; http://www.cysticfibrosis.ca), and up to 1 in 902 in the region of Saguenay–Lac-Saint-Jean (2–4). Still, unlike in other provinces (5–7), molecular epidemiology data are not available for the most common respiratory pathogen associated with this disease, Pseudomonas aeruginosa (8). A recent national molecular typing study included isolates from two clinics in Montreal, the largest city in Quebec (9), but analyses were not directed toward investigating each province individually. Here, we sought to describe the population structure of P. aeruginosa in Quebec to improve the epidemiological basis for infection control and patient management. We were mainly interested in the prevalences of epidemic strains, which have been reported in the Prairie Provinces and Ontario and are generally associated with worse clinical prognoses (7, 9, 10).

We selected all sequenced Quebec isolates from the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca) (11) and 11 reference strains (Data Set S1). The final data set of 298 genomes comprised isolates from five CF clinics scattered across southern Quebec, as well as from environmental sources. We performed a core genome phylogenetic analysis with SaturnV (https://github.com/ejfresch/saturnV) (12), and produced in silico molecular typing using Short Read Sequence Typing for Bacterial Pathogens (SRST2) v0.2.0 (13).

No geographic structure emerged from the five CF clinics represented (Fig. 1). However, multiple clones were shared among two or more clinics. Based on molecular sequence typing (14; https://pubmlst.org/), the most pervasive clones (sequence type 17 [ST17], ST155, and ST179), including well-characterized clone C (15), are all widely distributed around the world and likely reflect environmental abundance rather than patient-to-patient transmission (16). This is further supported by the presence of environmental isolates, which incidentally came from hospital sinks (Data Set S1), within ST155 and ST179. Encouragingly, not a single isolate in this study corresponded to epidemic strains identified in Ontario (Liverpool epidemic strain and epidemic strain B [7]) or the Prairies (Prairie epidemic strain [PES; ST192] [5]). It is not clear whether this is due to differences in infection control, human population demographics, or environmental P. aeruginosa populations among Canadian provinces. Australian studies provide evidence that, except for known epidemic strains (17), CF strains are a sample of the environmental P. aeruginosa population (18, 19). More in-depth analyses are forthcoming for CF clinics where genomic data can be associated with patient identifier (ID), age, study time point, etc. Unfortunately, this type of information, although essential to direct further investigation of genomic data, proved extremely difficult to obtain.

FIG 1
  • Open in new tab
  • Download powerpoint
FIG 1

Phylogenetic tree of 298 P. aeruginosa isolates (66,805 SNPs, 1,000 bootstraps). Three refence isolates are labeled and represented in black (LESB58 is the reference for the Liverpool epidemic strain). Ontario’s epidemic strain B (ESB) is also labeled. The most pervasive sequence types (STs) are identified. Group 5 isolates are relatively rare among CF patients (21). The same tree with genome IDs, detailed STs, and bootstrap values is provided in Fig. S1. Most environmental isolates are from hospitals and dental clinics of the greater Montreal area. Intrapatient redundancy, i.e., identical strains from the same patient, was not removed (numbers of patients: Quebec City, n = 33; Rouyn-Noranda, n = 31; Montreal, n = 27; Sherbrooke, n = 20; and Saguenay, n = 17). Isolates from the same clinic spanned up to a year for Montreal, Quebec City, and Saguenay, 3 years for Sherbrooke, and 6 years for Rouyn-Noranda; all clinical isolates were collected between 2007 and 2016 (see Data Set S1 for details).

Heterogeneity in P. aeruginosa population structure across Canada alone emphasizes the need for more customized patient care in the context of CF respiratory infections. This, of course, only adds to the great variability in antimicrobial resistance among P. aeruginosa isolates (11, 20). Canadian molecular epidemiology of P. aeruginosa may benefit from similar nationwide data from the United States. But, as mentioned in a recent review (16), there is a void to be filled in the literature in this regard.

Accession number(s).Assembled genomes used in this study are available as part of BioProject accession number PRJNA325248 (International Pseudomonas aeruginosa Consortium [IPC] genome sequencing project). The accession numbers for newly sequenced genomes are RWKX00000000 to RWVK00000000. The complete list of accession numbers is provided in Data Set S1 in the Supplemental Material.

ACKNOWLEDGMENTS

This work was supported by Cystic Fibrosis Canada (through CF Canada grant 2610 and a postdoctoral fellowship to J.J.).

S.J.C. is a research scholar of the Fonds de Recherche du Québec-Santé.

We thank Maryse Bandet, Annie Hallée, Cindy Lalancette, and David Lalonde Séguin for their assistance with isolate and data collection. We also thank members of the IBIS genomics analysis platform for their support.

FOOTNOTES

    • Accepted manuscript posted online 3 April 2019.
  • Supplemental material for this article may be found at https://doi.org/10.1128/JCM.02019-18.

  • Copyright © 2019 American Society for Microbiology.

All Rights Reserved.

REFERENCES

  1. 1.↵
    1. Rozen R,
    2. De Braekeleer M,
    3. Daigneault J,
    4. Ferreira-Rajabi L,
    5. Gerdes M,
    6. Lamoureux L,
    7. Aubin G,
    8. Simard F,
    9. Fujiwara TM,
    10. Morgan K
    . 1992. Cystic fibrosis mutations in French Canadians: three CFTR mutations are relatively frequent in a Quebec population with an elevated incidence of cystic fibrosis. Am J Med Genet 42:360–364. doi:10.1002/ajmg.1320420322.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Daigneault J,
    2. Aubin G,
    3. Simard F,
    4. De Braekeleer M
    . 1992. Incidence of cystic fibrosis in Saguenay–Lac-St.-Jean (Quebec, Canada). Hum Biol 64:115–119.
    OpenUrl
  3. 3.↵
    1. Laberge AM,
    2. Michaud J,
    3. Richter A,
    4. Lemyre E,
    5. Lambert M,
    6. Brais B,
    7. Mitchell GA
    . 2005. Population history and its impact on medical genetics in Quebec. Clin Genet 68:287–301. doi:10.1111/j.1399-0004.2005.00497.x.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Madore A-M,
    2. Prévost C,
    3. Dorfman R,
    4. Taylor C,
    5. Durie P,
    6. Zielenski J,
    7. Laprise C
    . 2008. Distribution of CFTR mutations in Saguenay– Lac-Saint-Jean: proposal of a panel of mutations for population screening. Genet Med 10:201. doi:10.1097/GIM.0b013e318164cb1c.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Parkins MD,
    2. Glezerson BA,
    3. Sibley CD,
    4. Sibley KA,
    5. Duong J,
    6. Purighalla S,
    7. Mody CH,
    8. Workentine ML,
    9. Storey DG,
    10. Surette MG,
    11. Rabin HR
    . 2014. Twenty-five-year outbreak of Pseudomonas aeruginosa infecting individuals with cystic fibrosis: identification of the Prairie epidemic strain. J Clin Microbiol 52:1127–1135. doi:10.1128/JCM.03218-13.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Speert DP,
    2. Campbell ME,
    3. Henry DA,
    4. Milner R,
    5. Taha F,
    6. Gravelle A,
    7. Davidson AG,
    8. Wong LT,
    9. Mahenthiralingam E
    . 2002. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am J Respir Crit Care Med 166:988–993. doi:10.1164/rccm.2203011.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Aaron SD,
    2. Vandemheen KL,
    3. Ramotar K,
    4. Giesbrecht-Lewis T,
    5. Tullis E,
    6. Freitag A,
    7. Paterson N,
    8. Jackson M,
    9. Lougheed MD,
    10. Dowson C,
    11. Kumar V,
    12. Ferris W,
    13. Chan F,
    14. Doucette S,
    15. Fergusson D
    . 2010. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 304:2145–2153. doi:10.1001/jama.2010.1665.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Lyczak JB,
    2. Cannon CL,
    3. Pier GB
    . 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microb Infect 2:1051–1060. doi:10.1016/S1286-4579(00)01259-4.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Middleton MA,
    2. Layeghifard M,
    3. Klingel M,
    4. Stanojevic S,
    5. Yau YCW,
    6. Zlosnik JEA,
    7. Coriati A,
    8. Ratjen FA,
    9. Tullis ED,
    10. Stephenson A,
    11. Wilcox P,
    12. Freitag A,
    13. Chilvers M,
    14. McKinney M,
    15. Lavoie A,
    16. Wang PW,
    17. Guttman DS,
    18. Waters VJ
    . 2018. Epidemiology of clonal Pseudomonas aeruginosa infection in a Canadian cystic fibrosis population. Annals ATS 15:827–836. doi:10.1513/AnnalsATS.201801-007OC.
    OpenUrlCrossRef
  10. 10.↵
    1. Somayaji R,
    2. Lam JC,
    3. Surette MG,
    4. Waddell B,
    5. Rabin HR,
    6. Sibley CD,
    7. Purighalla S,
    8. Parkins MD
    . 2017. Long-term clinical outcomes of ‘Prairie epidemic strain’ Pseudomonas aeruginosa infection in adults with cystic fibrosis. Thorax 72:333–339. doi:10.1136/thoraxjnl-2015-208083.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Freschi L,
    2. Jeukens J,
    3. Kukavica-Ibrulj I,
    4. Boyle B,
    5. Dupont M-J,
    6. Laroche J,
    7. Larose S,
    8. Maaroufi H,
    9. Fothergill JL,
    10. Moore M,
    11. Winsor GL,
    12. Aaron SD,
    13. Barbeau J,
    14. Bell SC,
    15. Burns JL,
    16. Camara M,
    17. Cantin A,
    18. Charette SJ,
    19. Dewar K,
    20. Déziel E,
    21. Grimwood K,
    22. Hancock REW,
    23. Harrison JJ,
    24. Heeb S,
    25. Jelsbak L,
    26. Jia B,
    27. Kenna DT,
    28. Kidd TJ,
    29. Klockgether J,
    30. Lam JS,
    31. Lamont IL,
    32. Lewenza S,
    33. Loman N,
    34. Malouin F,
    35. McArthur AG,
    36. McKeown J,
    37. Milot J,
    38. Naghra H,
    39. Nguyen D,
    40. Pereira SK,
    41. Perron GG,
    42. Pirnay J-P,
    43. Rainey PB,
    44. Rousseau S,
    45. Santos PM,
    46. Stephenson A,
    47. Taylor V,
    48. Turton JF,
    49. Waglechner N,
    50. Williams P
    . 2015. Clinical utilization of genomics data produced by the International Pseudomonas aeruginosa Consortium. Front Microbiol 6:1036. doi:10.3389/fmicb.2015.01036.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Jeukens J,
    2. Freschi L,
    3. Vincent AT,
    4. Emond-Rheault JG,
    5. Kukavica-Ibrulj I,
    6. Charette SJ,
    7. Levesque RC
    . 2017. A pan-genomic approach to understand the basis of host adaptation in Achromobacter. Genome Biol Evol 9:1030–1046. doi:10.1093/gbe/evx061.
    OpenUrlCrossRef
  13. 13.↵
    1. Inouye M,
    2. Dashnow H,
    3. Raven L-A,
    4. Schultz M,
    5. Pope B,
    6. Tomita T,
    7. Zobel J,
    8. Holt K
    . 2014. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 6:90. doi:10.1186/s13073-014-0090-6.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Jolley K,
    2. Maiden M
    . 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595. doi:10.1186/1471-2105-11-595.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Romling U,
    2. Kader A,
    3. Sriramulu DD,
    4. Simm R,
    5. Kronvall G
    . 2005. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ Microbiol 7:1029–1038. doi:10.1111/j.1462-2920.2005.00780.x.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Parkins MD,
    2. Somayaji R,
    3. Waters VJ
    . 2018. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 31:00019-18. doi:10.1128/CMR.00019-18.
    OpenUrlCrossRef
  17. 17.↵
    1. Kidd TJ,
    2. Magalhães RJS,
    3. Paynter S,
    4. Bell SC
    . 2015. The social network of cystic fibrosis centre care and shared Pseudomonas aeruginosa strain infection: a cross-sectional analysis. Lancet Respir Med 3:640–650. doi:10.1016/S2213-2600(15)00228-3.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Kidd TJ,
    2. Ritchie SR,
    3. Ramsay KA,
    4. Grimwood K,
    5. Bell SC,
    6. Rainey PB
    . 2012. Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS One 7:e44199. doi:10.1371/journal.pone.0044199.
    OpenUrlCrossRef
  19. 19.↵
    1. Ranganathan SC,
    2. Skoric B,
    3. Ramsay KA,
    4. Carzino R,
    5. Gibson A-M,
    6. Hart E,
    7. Harrison J,
    8. Bell SC,
    9. Kidd TJ
    . 2013. Geographical differences in first acquisition of Pseudomonas aeruginosa in cystic fibrosis. Ann Am Thorac Soc 10:108–114. doi:10.1513/AnnalsATS.201209-077OC.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Jeukens J,
    2. Freschi L,
    3. Kukavica-Ibrulj I,
    4. Emond-Rheault J-G,
    5. Tucker NP,
    6. Levesque RC
    . 2019. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa. Ann N Y Acad Sci 1435:5–17. doi:10.1111/nyas.13358.
    OpenUrlCrossRef
  21. 21.↵
    1. Freschi L,
    2. Vincent AT,
    3. Jeukens J,
    4. Emond-Rheault J-G,
    5. Kukavica-Ibrulj I,
    6. Dupont M-J,
    7. Charette SJ,
    8. Boyle B,
    9. Levesque RC
    . 2019. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer and pathogenicity. Genome Biol Evol 11:109–120. doi:10.1093/gbe/evy259.
    OpenUrlCrossRef
PreviousNext
Back to top
Download PDF
Citation Tools
The Pseudomonas aeruginosa Population among Cystic Fibrosis Patients in Quebec, Canada: a Disease Hot Spot without Known Epidemic Isolates
Julie Jeukens, Luca Freschi, Irena Kukavica-Ibrulj, Jean-Guillaume Emond-Rheault, Christian Allard, Jean Barbeau, André Cantin, Steve J. Charette, Eric Déziel, François Malouin, Julie Milot, Dao Nguyen, Clara Popa, Brian Boyle, Roger C. Levesque
Journal of Clinical Microbiology May 2019, 57 (6) e02019-18; DOI: 10.1128/JCM.02019-18

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Clinical Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Pseudomonas aeruginosa Population among Cystic Fibrosis Patients in Quebec, Canada: a Disease Hot Spot without Known Epidemic Isolates
(Your Name) has forwarded a page to you from Journal of Clinical Microbiology
(Your Name) thought you would be interested in this article in Journal of Clinical Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The Pseudomonas aeruginosa Population among Cystic Fibrosis Patients in Quebec, Canada: a Disease Hot Spot without Known Epidemic Isolates
Julie Jeukens, Luca Freschi, Irena Kukavica-Ibrulj, Jean-Guillaume Emond-Rheault, Christian Allard, Jean Barbeau, André Cantin, Steve J. Charette, Eric Déziel, François Malouin, Julie Milot, Dao Nguyen, Clara Popa, Brian Boyle, Roger C. Levesque
Journal of Clinical Microbiology May 2019, 57 (6) e02019-18; DOI: 10.1128/JCM.02019-18
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • LETTER
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Pseudomonas aeruginosa
clonal strains
cystic fibrosis
epidemic strains
genomes
genomics
molecular epidemiology

Related Articles

Cited By...

About

  • About JCM
  • Editor in Chief
  • Board of Editors
  • Editor Conflicts of Interest
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Resources for Clinical Microbiologists
  • Ethics
  • Contact Us

Follow #JClinMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

 

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0095-1137; Online ISSN: 1098-660X