Screening of Stool Samples for Identification of Vancomycin-Resistant Enterococcus Isolates Should Include the Methyl-α-D-Glucopyranoside Test To Differentiate Nonmotile Enterococcus gallinarum from E. faecium

CHRISTINE Y. TURENNE,1,2* DARYL J. HOBAN,1,2 JAMES A. KARLOWSKY,1,2,3 GEORGE G. ZHANEL,1,2,3,4 AND AMIN M. KABANI1,2,4

Department of Medical Microbiology, Faculty of Medicine,1 and Faculty of Pharmacy,3 University of Manitoba, and Departments of Clinical Microbiology2 and Medicine4 Health Sciences Centre, Winnipeg, Manitoba R3A 1R9, Canada

Received 6 February 1998/Returned for modification 24 March 1998/Accepted 12 May 1998

The methyl-α-D-glucopyranoside (MDG) test has been shown to be superior to motility testing in differentiating Enterococcus faecium from E. gallinarum. In the present study, 33 vancomycin-resistant enterococci (VRE) isolates collected as part of a stool surveillance study were compared by using motility and MDG. Motility testing identified all 33 isolates as E. faecium, whereas MDG identified 11 of the 33 isolates as nonmotile E. gallinarum. The MDG results were confirmed by sequencing the 16S rDNA V6-to-V8 region. We conclude that the MDG test is a necessary component of routine VRE screening.

Enterococci have been shown to be the second most common cause of nosocomial infection in the United States (15). Enterococcus faecalis is responsible for the majority of enterococcal infections, whereas E. faecium, while responsible for significantly fewer infections, is more commonly associated with resistance to β-lactams, fluoroquinolones, and glycopeptides (9, 10) and is associated with greater morbidity and mortality (7). As the prevalence of infections caused by vancomycin-resistant enterococci (VRE) is presently low, the screening of stool for identification of colonizers in high-risk patients is the focus of several epidemiological studies (10, 13). It is critical in such screening studies to differentiate E. faecalis and E. faecium from other enterococcal species, such as E. gallinarum and E. casseliflavus, which do not normally cause human disease but commonly demonstrate intrinsic low-level glycopeptide resistance (1). Recent reports suggest that motility alone as the criterion for differentiating between E. gallinarum and E. faecium (3) is inadequate and may lead to the misidentification of isolates of nonmotile E. gallinarum as E. faecium (5).

Recently, Devriese and coworkers have shown the methyl-α-D-glucopyranoside (MDG) test to be reliable and accurate in differentiating E. casseliflavus and E. gallinarum from E. faecalis and E. faecium (4). We were interested in determining the impact of the MDG test using a collection of vancomycin-resistant E. faecium isolates taken from a recent stool surveillance project (10) in which 1,500 enterococcal isolates had been identified to species level with a conventional identification algorithm, not containing MDG (8). The susceptibilities to glycopeptides vancomycin and teicoplanin and the glycopeptide resistance genotypes were also determined (6, 11).

Frozen stock cultures of 33 vancomycin-resistant E. faecium isolates (MIC, 4 μg/ml) obtained in the VRE prevalence study were subcultured onto Trypticase soy–5% sheep blood agar and incubated at 37°C for 24 h for MDG testing and PCR lyase preparation. MDG testing of all VRE isolates was performed as previously described by Devriese et al. (4).

Enterococcal species identification of each isolate was confirmed by sequencing the V6-to-V8 region (12) of the 16S rDNA which corresponds to bp 929 to 1369 of the Escherichia coli 16S rRNA sequence (2). The following ATCC strains were chosen for sequence determination: E. faecalis ATCC 29212, E. faecium ATCC 35667, E. gallinarum ATCC 35038, and E. casseliflavus ATCC 12755. Thirty-two enterococcal isolates from the stool surveillance project had also been sequenced to confirm the specificity and consistency of all sequences: 9 E. faecium isolates, 10 E. faecalis isolates, 5 E. casseliflavus isolates, and 8 E. gallinarum isolates. Subsequently, sequencing of the V6-V8 region of the 16S rDNAs of all 33 VRE isolates tested for MDG was performed. DNA extracts were prepared by using one or two colonies from the 24-h subcultures. DNA was isolated by using the QIAamp tissue kit (Qiagen, Santa Clarita, Calif.) in accordance with the manufacturer’s protocol. PCR amplification was performed by using universal 16S rDNA gene primers 91E(G) (5’TCAAGGAATCAGCAGGGGC) and 13B (5’AGGCCGGAACGTTACAC) (14). A 50-μl PCR mixture contained 5 μl of DNA template; 5 μl of 25 mM MgCl2, 10× PCR buffer; 1.25 mM each dCTP, dGTP, dATP, and dUTP; 5 μl of 100 μM each

TABLE 1. Comparison of MDG testing and species identification using sequencing with conventional testing of 33 VRE (E. faecium) isolates

<table>
<thead>
<tr>
<th>No. of isolates</th>
<th>MIC (μg/ml)</th>
<th>Genotyping result</th>
<th>Sequencing result</th>
<th>Conventional testa result</th>
<th>MDG result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin</td>
<td>Teicoplanin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4–8</td>
<td>0.25–0.5</td>
<td>vanC</td>
<td>E. cass/E. gallb E. faecium</td>
<td>E. faecium</td>
</tr>
<tr>
<td>10</td>
<td>4–8</td>
<td>0.25–0.5</td>
<td>vanB</td>
<td>E. faecium</td>
<td>E. faecium</td>
</tr>
<tr>
<td>12</td>
<td>256–512</td>
<td>4–32</td>
<td>vanA</td>
<td>E. faecium</td>
<td>E. faecium</td>
</tr>
</tbody>
</table>

* Corresponding author. Mailing address: Department of Clinical Microbiology, Health Sciences Centre, MS6-820 Sherbrook St., Winnipeg, Manitoba R3A 1R9, Canada. Phone: (204) 787-4696. Fax: (204) 787-4699. E-mail: umturen0@cc.UManitoba.ca.

Includes biochemical reactions, motility, and pigment.

b E. cass, E. casseliflavus; E. gall, E. gallinarum.

c Misidentification of nonmotile E. gallinarum.
E. casseliflavus (Eca).

concordance with prior motility-based demonstrated that 22 isolates were MDG negative, showing in accordance with the manufacturers’ instructions. With the PE-ABI 373 DNA sequencing system and Software 9600 was performed, and sequencing analysis was performed with the PE-ABI 373 DNA sequencing system and Software 373 in accordance with the manufacturers’ instructions.

Sequencing reactions were performed with the ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction kit (PE Applied Biosystems, Foster City, Calif.). The primer used for the sequencing reaction was 91E(G) or 13B diluted 1:100 in Tris-EDTA buffer. Cycle sequencing on the GeneAmp PCR System 9600 was performed, and sequencing analysis was performed with the PE-ABI 373 DNA sequencing system and Software 373 in accordance with the manufacturers’ instructions.

The results obtained by MDG testing for all 33 VRE isolates demonstrated that 22 isolates were MDG negative, showing concordance with prior motility-based E. faecium identification. However, 11 VRE isolates tested MDG positive, indicating that they were in fact not E. faecium as originally reported but, instead, nonmotile E. gallinarum (Table 1). These 11 strains all possessed low-level glycopeptide resistance, with vancomycin and teicoplanin MICs of 4 to 8 μg/ml. The PCR was performed with a Perkin-Elmer GeneAmp PCR System 9600 with cycles of 37°C for 10 min and 95°C for 10 min and 30 cycles of 95, 55, and 72°C for 1 min each and incubated at 72°C for 10 min for final extension.

The MDG results were confirmed by sequencing the 16S rDNA gene for routine VRE screening. We conclude that the MDG test is a reliable, rapid, and cost-effective method for identification of clinically relevant Enterococcus species and that it is a necessary component for routine VRE screening.

Nucleotide sequence accession numbers. The determined sequences comprising the V6-to-V8 regions of the 16S rDNA gene for each Enterococcus species used in this study have been submitted to GenBank with the following accession numbers: E. faecalis, AF023101; E. faecium, AF023102; E. gallinarum, AF023103; E. casseliflavus, AF023104.

REFERENCES


