RETRACTION

Evidence that Rodents Are a Reservoir of Hepatitis E Virus for Humans in Nepal

Junkun He, Bruce L. Innis, Mrigendra P. Shrestha, Edward T. Clayson, Robert M. Scott, Kenneth J. Linthicum, Guy G. Musser, Scott C. Gigliotti, Leonard N. Binn, Robert A. Kuschner, and David W. Vaughn

Walter Reed Army Institute of Research, Silver Spring, Maryland; Walter Reed Army Institute of Research/Armed Forces Research Institute of Medical Sciences Research Unit—Nepal, Kathmandu, Nepal; Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; and American Museum of Natural History, New York, New York

Volume 40, no. 12, p. 4493–4498, 2002. Our publication failed to note that the Nepal rodent hepatitis E virus (HEV) sequence reported (GenBank no. AF396860) was 100% homologous with HEV strain Pakistan-Abbottabad-2B (HEV2B). This error occurred because the phylogenetic analysis presented considered an HEV strain set that did not include the HEV2B sequence (J. He, L. N. Binn, S. A. Tsarev, C. C. Hayes, J. A. Frean, M. Isaacson, and B. L. Innis, J. Biomed. Sci. 7:334–338, 2000). Because HEV2B was handled in the laboratory where the rodent specimens were analyzed, the complete sequence homology suggests that the Nepal rodent HEV sequence (identical for four animals) represents possible laboratory contamination. Contamination may have occurred despite precautions taken to avoid and detect contamination (HEV2B was not in use in the laboratory during the time of the testing, and all negative controls remained negative). Reanalysis of the specimens in a laboratory unexposed to HEV is impossible, as all serum specimens from the four positive animals have been exhausted. Although we reaffirm the validity of the serological evidence presented that rodents serve as an HEV reservoir for humans in Nepal, we withdraw the claim of HEV genome detection in rodents. Therefore, we retract our paper from the Journal of Clinical Microbiology and the sequence information from GenBank.