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Clostridium difficile PCR ribotype 027 comprised 0.2% of a collection of Swedish isolates in 1997–2001 (3 of
1,325 isolates). These isolates had lower moxifloxacin MICs than the epidemic type 027 isolates, but they had
the same tcdC sequence and toxin yield. Type 027 produced 3- to 13-fold more toxin than did major Swedish
types. One epidemic strain (027/NAP1a) sporulated more than did other type 027 isolates, a feature that should
contribute to its survival and spread.

A strain of Clostridium difficile (PCR ribotype 027 and
pulsed-field gel electrophoresis type NAP1 [027-NAP1]) pro-
ducing high levels of toxin has in recent years been associated
with increased infection rates, outbreaks, and severe disease
(10, 12, 15, 16, 17, 18, 19, 22, 25, 26, 31, 34). Its high toxin yield
may, in part, be caused by a frameshift mutation in tcdC (5),
encoding a negative regulator of TcdR and part of the C.
difficile pathogenicity locus (20, 21). Type 027 has been asso-
ciated with the use of fluoroquinolones, especially moxifloxacin
and gatifloxacin (3, 4, 8, 27, 32), that promote C. difficile growth
and toxin production in an animal model (1). The role of these
factors for the worldwide expansion of type 027/NAP1 is ob-
scure. We compared historical and epidemic isolates of PCR
ribotype 027 with respect to antibiotic susceptibility, tcdC se-
quence, toxin yield, S-layer, and sporulation.

C. difficile isolates were obtained from the following: a col-
lection of 1,325 strains isolated in 1997–2001 in central and
south Sweden (23, 29, 30, 35, 36, 37); the recent U.S.-Canadian
epidemic (US1067 and US1165, representing PCR ribotype

027/pulsed-field gel electrophoresis types NAP1a and NAP1b,
respectively); and the Culture Collection, University of Göte-
borg (CCUG), Göteborg, Sweden (CCUG 19125 [VPI 10463],
CCUG 37783, and CCUG 20309 [8864]). For PCR ribotyping,
see reference 30. Antibiotic susceptibility was determined by
Etest (AB Biodisk, Solna, Sweden) using IsoSensitest agar
(Oxoid Ltd, Basingstoke, United Kingdom) supplemented with
5% defibrinated horse blood and 20 �g/ml of �-NAD (Swedish
Reference Group for Antibiotics [www.srga.org]). The isola-
tion of bacterial DNA, PCR, and sequencing were performed
as described previously (24) by using primers for tcdC (28). For
growth experiments, overnight cultures were diluted 106-fold
into triplicate tubes containing peptone-yeast without cysteine
or glucose that were further grown for 48 h (13, 14). Sampling,
separation of intra- and extracellular fractions, sonication, and
toxin measurements (by enzyme immunoassay) were per-
formed as described previously (13, 14). Vegetative and sporu-
lated cells were scored by microscopy by using a Bürker cham-
ber; 10 squares containing 5 to 15 cells were counted per
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TABLE 1. Clinical data for Swedish patients infected with C. difficile PCR ribotype 027

Strain Year Age (yrs) No. of stools
per day Temp (°C) No. of leukocytes

(1,000/mm3) Underlying diseasea Antibiotic treatmentb

T-378 1997 53 �10 �39 17.9 None Penicillin V
Ö99-1670 1999 85 5–10 38 31.9 Lung cancer Amoxicillin
A177:1 2001 92 5–10 �38 31.6 None Piperacillin-tazobactam

metronidazole/ciprofloxacin

a Indicates severe underlying disease. The patient infected with T-378 recovered, while the others died within 3 months after CDAD diagnosis.
b Used within the 2 months prior to CDAD onset; piperacillin-tazobactam treatment was followed directly by oral metronidazole/ciprofloxacin. After CDAD

diagnosis, all patients were treated with metronidazole.
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isolate, and the values were averaged. Two-dimensional gel
electrophoresis was performed as described in reference 13;
duplicate 24-h intracellular protein samples of US1067,
US1165, and T-378 and a single sample of Ö99-1670 were
focused on 180-mm linear immobilized pH gradient strips (pH
4 to 7; Amersham Biosciences, Uppsala, Sweden). For identi-
fication, protein spots were excised from Coomassie-stained
gels and processed using the Montage in-gel digestion kit (Mil-
lipore, Billerica, MA), together with a vacuum manifold unit.
Two microliters of eluted peptides was loaded on an anchor
chip plate (Bruker Daltonics, Inc., Bremen, Germany) and
covered by 1 �l of �-cyano-4-hydoxycinnamic acid. Peptide
mass mapping of tryptic peptides was performed by a Bruker
Daltonics Reflex IV matrix-assisted laser desorption ioniza-
tion–time of flight apparatus equipped with a nitrogen laser
(337.1 nm) and operated in a reflective positive mode. Spec-
trum calibration was performed by internal use of trypsin frag-
ments of 842.510, 1,045.564, and 2,211.105 Da and the external
use of a 1,000- to 4,000-Da peptide calibration standard
(Bruker Daltonics, Inc.). Identified peptide masses were ana-
lyzed in the Mascot search engine at www.matrixscience.com.

By using two C. difficile PCR ribotype 027 reference strains,
three type 027 isolates were identified in the Swedish national
database; these isolates represented 0.2% of strains collected
in 1997-2001. (PCR ribotype 027 corresponded to type SE10
according to the Swedish nomenclature.) The type 027-in-
fected patients had developed moderate to severe Clostridium
difficile-associated diarrhea (CDAD) (Table 1), and like other
historical 027 isolates (22), the Swedish ones had lower MICs
for moxifloxacin compared to the MICs for the recent epi-
demic type 027/NAP1 (Table 2). In addition, the MICs for
metronidazole were about threefold lower in the Swedish iso-
lates. The tcdC sequence was identical in the type 027 isolates
Ö99-1670, US1067, and US1165, including the characteristic
18-bp deletion and the frameshift mutation at position 117,
while isolates representing the major Swedish types SE20 and
SE30 had a wild-type tcdC allele (see Fig. S1 in the supple-
mental material). The toxin yield was similar in historical and
epidemic type 027 isolates but 3- to 13-fold higher than the
yield in isolates representing the common types SE20, SE30,
and SE21 (Fig. 1).

Three of the type 027 isolates had sporulation frequencies of
about 25% at 48 h (Fig. 2). T-378 was morphologically different
from the other 027 isolates, showing elongated doublet cells

usually containing a single spore (not shown). Thus, the actual
sporulation frequency per unit cell was about twofold lower
than the scored one, i.e., closer to 25% than to 45% (Fig. 2).
Strain US1067 (NAP1a) sporulated more (60%; P � 0.001)
(Fig. 2) and had a smaller cell and colony size compared to the
case for the other type 027 isolates. Excluding the low-sporu-
lating strains VPI 10463 and 8864, US1067 also had a 20%
higher optical density at 24 h than those of all other isolates
(P � 0.001) (data not shown), i.e., consistent with character-
istics of the epidemic 027 type (34). Despite the differences in

TABLE 2. MICs (�g/ml) of antibiotics for C. difficile isolates by using Etest

Antibiotic
MIC for strain

T-378a Ö99-1670a A177:1a US1067b US1165b 8864c

Ciprofloxacin �32 �32 �32 �32 �32 �32
Levofloxacin �32 �32 �32 �32 �32 �32
Moxifloxacin 0.5 2 1.0 �32 �32 1.0
Clindamycin 4 8 4 4 2 4
Metronidazoled 0.053 (3) 0.125 (3) 0.084 (3) 0.33 (3) 0.25 (3) 0.19 (2)
Vancomycin 0.5 0.25 0.5 0.5 0.5 1.0

a Historical Swedish PCR ribotype 027 isolates.
b Recent epidemic PCR ribotype 027–pulsed-field gel electrophoresis type NAP1 isolates.
c Reference strain (toxin A� B�) obtained from CCUG, Göteborg, Sweden.
d Averages of independent experiments (the number of experiments is indicated in parentheses). Means were 0.088 and 0.31 �g/ml for the historical and epidemic

isolates, respectively (P � 0.015 	t test using unequal variance
).

FIG. 1. Toxin yields of 24-h C. difficile cultures. Isolates T-378,
Ö99-1670, A177:1, US1067, and US1165 are type SE10, i.e., PCR
ribotype 027. Isolates representing major Swedish PCR ribotypes,
CCUG 37783 (SE20, i.e., PCR ribotype 001), Ö99-1751 (SE30), Ö99-
0304 (SE21), and two high-level toxin producing reference strains, VPI
10463 (SE20c) and 8864 (SE10b), were included for comparison. Val-
ues are averages of duplicate cultures, and bars indicate standard
errors. Statistics were calculated using logarithmic average values of
total toxin for “All SE10,” CCUG 37783, Ö99-1751, Ö99-0304, VPI
10463, and 8864 by using analysis of variance and Bonferroni post hoc
compensation for multiple comparisons (the P value for the compar-
ison of “All SE10” and strain Ö99-1751 is shown).
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sporulation frequency and morphology, the expressed protein
patterns of US1067, US1165, and Ö99-1670 were similar (see
Fig S2 in the supplemental material). However, T-378 expressed
an additional S-layer (see Fig. S2 and Table S1 in the supplemen-
tal material), possibly causing its unique morphology.

The “hypervirulence” of C. difficile 027/NAP1 (16, 25, 26)
has been ascribed to its higher (about 20-fold) toxin yield in
vitro compared to those of toxinotype 0 strains (34), caused by
loss of TcdC function (5, 21). However, the moderate three-
fold-higher toxin yield of type 027 (defective tcdC) compared
to those of types SE30/SE20 (wild-type tcdC) indicates that
other factors may also affect toxin production. For example,
the nutritional sensor CodY may further affect the range of
toxin levels (6). The fact that strains VPI 10463 and 8864
yielded few spores but superior amounts of toxin during sta-
tionary phase was in accord with the inverse relation between
spore and toxin yield generally found among C. difficile isolates
(2). No clinical isolate of the same PCR ribotype as that of
strain 8864 and only two isolates sharing type and character-
istics with VPI 10463 were found in our national database,
suggesting that high-level toxin producers with low sporulation
capacities have poor transmission rates. Although antibiotics
that promote growth and toxin production by resistant C. dif-
ficile in vivo are major risk factors for developing CDAD (1, 7,
9, 11, 33), our data showed that certain PCR ribotype 027
strains have different morphologies and growth characteristics
as well as high capacities for both toxin and spore production,
features that may contribute to disease severity, therapy fail-
ure, relapse, and spread.

We thank Michel Warny for providing strains US1067 and US1165
and Mats Andersson for matrix-assisted laser desorption ionization–
time of flight analyses.
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