Possible Laboratory Contamination Leads to Incorrect Reporting of Vibrio cholerae O1 and Initiates an Outbreak Response

Anthony M. Smith,a,b Karen H. Keddy,a,b Husna Ismail,a,b Nomsa Tau,a Arvinda Sooka,a Brett N. Archer,c Juno Thomas,c and Noreen Crispd

Enteric Diseases Reference Unit, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Outbreak Response Unit, Epidemiology Division, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; and Communicable Disease Control, Department of Health, Kimberley, South Africa

Vibrio cholerae O1 in a river water specimen in South Africa was reported, and a public health response followed in order to prevent an outbreak. Further investigation determined this to be a pseudoalert of V. cholerae O1, possibly linked to laboratory contamination. Following culture of bacteria from the water specimen, the testing laboratory possibly contaminated the culture with a V. cholerae O1 reference strain and then mistakenly reported isolation of V. cholerae O1.

Cholera is acquired by ingestion of the bacterium Vibrio cholerae O1 or O139 (7). Cholera has the ability to cause large, explosive outbreaks, as shown by the Haiti outbreak which started in October 2010 and recorded more than 250,000 cases and 4,000 deaths within the first 6 months (5). Therefore, a single case of V. cholerae O1 is notifiable in South Africa and must trigger an outbreak response, including the implementation of public health interventions. The most recent cholera outbreak in South Africa occurred over the period from November 2008 to May 2009 and recorded 12,706 cases, with 65 deaths. Since then, surveillance for V. cholerae O1 in South Africa over the period from June 2009 to 17 March 2011 identified only a single human case, in June 2010, which was established to have been acquired during travel in India. In the present study, we report a pseudoalert of V. cholerae O1 in South Africa linked to possible laboratory contamination with a laboratory reference strain.

On 18 March 2011, a water specimen was collected from a river in South Africa, as part of routine water testing done by the Department of Water Affairs. The specimen was analyzed by a local diagnostic laboratory; a strain of V. cholerae was isolated and identified as belonging to serogroup O1. The strain was forwarded to the Enteric Diseases Reference Unit (EDRU) of the National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS) for further analysis. Over the period from 24 March to 1 April 2011, an additional 4 strains of V. cholerae were isolated from subsequent river water specimens taken in the same area as the initial V. cholerae O1 specimen; however, these 4 strains were identified as V. cholerae non-O1. These strains were also forwarded to the EDRU for further analysis. The isolation of V. cholerae O1 put the public health authorities on alert and readiness for an outbreak investigation and response. Soon after, the EDRU confirmed the diagnosis (discussed below) and response activities were fully implemented. This included, first, strengthening surveillance to detect human cases and preparing health care facilities. Health care clinics and hospitals within the affected district, 4 other districts in the same province, and authorities of the neighboring province were all alerted to the findings. Health care workers were reminded of the clinical presentation and treatment of cholera and the required actions following identification of a suspected case, including telephonic notification to the local Department of Health, collection of stool specimens for laboratory investigations, and maintaining a standardized list of all suspected cases. Second, community-level health promotion activities were initiated, and these included focus on safe-water practices and point-of-use purification where communities use river water for drinking, practicing good hygiene, and encouraging early health care-seeking behavior in the event of illness. Third, the Department of Water Affairs conducted further collection of water specimens from strategic sites in the catchment area to investigate the extent of contamination and a possible source. Finally, alerts were distributed to neighboring districts to sensitize them regarding cholera. Despite enhanced surveillance activities, the provincial health authorities were not notified of any suspected human cases of cholera and no clinical specimens were received by laboratories for cholera investigations.

Laboratory analysis at the EDRU proceeded as follows. The identities of bacterial isolates were investigated using standard phenotypic microbiological identification and serotyping techniques. PCR was used to determine the presence of cholera toxin (ctxA gene) in the bacteria and to determine the biotype of V. cholerae O1 by detecting the El Tor or classical variant of the tcpA gene (encoding the toxin-coregulated pilus), using previously described methods (8). The nucleotide sequences of rstR, ctxB, and tcpA genes were determined by isolation of genes from bacteria by using previously described PCR methods (3, 4, 9) followed by DNA sequencing using the BigDye Terminator cycle sequencing kit (Applied Biosystems, Foster City, CA) and an Applied Biosystems 3500 genetic analyzer. DNA sequences were collated and analyzed by using Lasergene (version 8.0) software (DNASTAR, Inc., Madison, WI), followed by examination for similarity to DNA sequences at the DNA database of the National Center for Biotechnology Information (NCBI) using the Blast algorithm.
The genotypic relatedness of isolates was investigated using a PulseNet standardized pulsed-field gel electrophoresis (PFGE) analysis protocol employing separate digestion and analysis with NotI and SfiI restriction enzymes (6). PFGE patterns were analyzed by using BioNumerics (version 6.5) software (Applied Maths, Sint-Martens-Latem, Belgium) with dendrograms of the patterns created, by using the unweighted-pair group method with arithmetic averages, with analysis of banding patterns incorporating the Dice coefficient at an optimization setting of 1.5% and a position tolerance setting of 1.5%.

The first V. cholerae strain (strain 1) was confirmed as belonging to serogroup O1 and further determined to be serotype Ogawa and PCR positive for the cholera toxin (ctxA gene). Surprisingly, it was also found to be of a classical biotype, as determined by a PCR-positive result for the classical variant of the tcpA gene. To verify this finding of a classical biotype, the nucleotide sequence of the rstR, ctxB, and tcpA genes were determined for strain 1 and analyzed in the NCBI database; all DNA sequences were found to be a 100% match with DNA sequences belonging to classical V. cholerae O1 biotypes. The four succeeding strains of V. cholerae (strains 2 to 5) were confirmed as V. cholerae non-O1 and further determined to be PCR negative for the cholera toxin. This was unsurprising, as V. cholerae non-O1 strains in a patient and from water samples from the area have previously been described (12).

The genetic relatedness of the five V. cholerae strains was then investigated by using PFGE analysis. Each strain revealed a unique PFGE pattern (Fig. 1), which suggested no close relationship between any of the strains. Interestingly, the PFGE pattern for strain 1 was unusual in that it showed no close similarity to our collection of V. cholerae O1 patterns (our database included only patterns of El Tor biotype strains). Our PCR and DNA sequencing results strongly suggested that strain 1 was of a classical biotype; PFGE data then supported this, as the PFGE pattern of strain 1 was uncharacteristic of typical El Tor patterns. The pattern was then analyzed against various global databases of PFGE patterns, including the database network of PulseNet International (http://www.pulsenetinternational.org/Pages/default.aspx); the pattern was found to match several classical strains of V. cholerae O1, including a match with historical classical strains last identified in India in the 1940s and also matching more recent classical strains isolated in Mexico in the early 1990s (1). These data confirmed that strain 1 was indeed a classical biotype. Attention was now firmly focused on strain 1, and further questions arose. Additional sampling and testing of river water in the same catchment area which yielded the first isolation of V. cholerae O1 resulted in no further strains belonging to this O1 serogroup. Also, there was the overwhelming laboratory evidence showing that strain 1 was of a classical biotype. This was very surprising, considering that classical V. cholerae O1 has never been reported from Africa and that over recent years, classical strains have not been isolated worldwide, including from southern Bangladesh, the last of the niches where the classical biotype prevailed (10).

Currently, historical strains of classical V. cholerae O1 can be obtained from various sources, including the American Type Culture Collection (ATCC) in the United States and the National Collection of Type Cultures (NCTC), Health Protection Agency, in the United Kingdom. Reference strains from ATCC and NCTC are commonplace in South Africa testing laboratories and typically used as control strains for various laboratory tests. The testing laboratory which made the initial diagnosis of strain 1 was asked about the details of its control strains. It was found that this laboratory uses NCTC8021 (a 1940s isolate of classical V. cholerae O1) as a control strain. The testing laboratory was asked to forward this control strain to the EDRU for PFGE analysis. The PFGE pattern (for both NotI and SfiI digestions) was a 100% match to that of strain 1 (Fig. 1). Our investigation therefore suggests that following culture of bacteria from the river water specimen, the testing laboratory possibly contaminated the culture with a V. cholerae O1 control strain (NCTC8021) and then mistakenly re-
ported isolation of *V. cholerae* O1. It is not clear how this contamination may have occurred. The laboratory reports understaffing in the setting of a high workload (~9,500 tests performed during March 2011); this may well have been a contributing factor.

Pseudoalerts associated with laboratory contamination have previously been reported; a PubMed literature search of published data (limited to titles and abstracts) using the phrase “pseudo outbreak laboratory contamination” generated 24 reports dating back to 1984. Some of these reports ascribed the pseudoalerts to laboratory contamination with laboratory reference/control strains; these included a pseudo-outbreak of *Clostridium sordellii* involving six patients (2) and a pseudo-outbreak of *Mycobacterium scrofulaceum* involving three patients (11).

In conclusion, we have described a possible laboratory contamination involving a *V. cholerae* O1 reference strain, which led to a public health response in order to prevent an outbreak. This study has highlighted the fact that when a very unexpected or unusual laboratory diagnosis is made, the possibility of laboratory contamination ought to be considered. Although no true outbreak occurred, the rapid response and investigation conducted by the response teams provided a valuable exercise. This highlights the need for a fully functional laboratory, epidemiological, and managerial support structure to accurately and rapidly identify organisms of public health importance, in order to preserve limited public health resources.

Nucleotide sequence accession numbers. Nucleotide sequences for *rstR*, *ctxB*, and *tcpA* genes from strain 1 are not unique. Identical sequences (100% matches) are well represented and described in NCBI GenBank. As a result, sequences for strain 1 were not deposited into NCBI GenBank. Sequences for strain 1 are identical to sequences described for classical *V. cholerae* O1 strain O395, with accession numbers as follows: CP001236.1 (*rstR* and *ctxB* genes) and CP000627.1 (*tcpA* gene).

ACKNOWLEDGMENTS

Many individuals were involved in this investigation, and we cannot mention them all by name. However, we thank and acknowledge all those involved and affiliated with the following South African institutions: National Institute for Communicable Diseases, National Health Laboratory Service, National Department of Health, and National Department of Water Affairs. We also thank the following individuals (and organizations) for assisting with comparison of our *V. cholerae* PFGE patterns against their database of patterns: Thandavarayan Ramamurthy (National Institute of Cholera and Enteric Diseases, India), Munirul Alam and Alejandro Cravioto (International Center for Diarrheal Disease Research, Bangladesh), Peter Gerner-Smidt, Steven Stroika, and Nikki Maxwell (PulseNet USA), Mariana Pichel (PulseNet Latin America), Celine Nadon (PulseNet Canada), and Kai Man Kam and Biao Kan (PulseNet Asia Pacific).

REFERENCES