














purified by metal-chelate affinity chromatography, and the ELISA conditions were
optimized. Using the formatted HA-2vb10-6�His VHH and the HA–anti-HA capture
ELISA format (Fig. 1A), high reactivity levels for the recombinant protein BLS-Stx2B were
observed. However, no reactivity for the native Stx2a or the other variants was detected
(Fig. S5). For this reason, and to improve the sensitivity of the capture ELISA, the
purified 2vb10-6�His VHH was in vitro biotinylated and a new biotin-streptavidin
capture ELISA was developed and optimized (Fig. 1A, biotin-streptavidin capture ELISA).

FIG 2 Legend (Continued)
the corresponding VHH (Fig. 1A). Each panel corresponds to one capture VHH in combination with each of the 13 detection VHHs. The
recombinant proteins BLS-Stx2B, GST-Stx2B, and BLS (control) were assayed at 1 � g/ml (50 ng/well). The arrows indicate the six VHH pairs
selected for further analysis. Reactivity values with GST were similar to those obtained with BLS (data not shown).

FIG 3 Analysis of culture supernatants of the indicated strains by the HA–anti-HA capture ELISA using the six selected VHH pairs. Capture VHHs (VHH-6�His)
were purified by metal-chelate affinity chromatography, and detection antibodies (HA-VHHs) were obtained from the periplasmic extracts (PE) enriched in the
corresponding VHH. The recombinant proteins BLS-Stx2B and BLS and also PB (Penassay broth antibiotic medium 3; culture medium used to grow the different
strains) were used as controls. The Shiga toxin type and variant expressed by each strain are indicated in parentheses.
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FIG 4 Detection of recombinant and native Stx2 by the capture ELISAs using the 1vb1-2vb10 VHH capture-detection pair. (A and B) HA–anti-HA capture ELISA
using the 1vb1-6�His (purified) and HA-2vb10 VHHs (PE) as capture and detection antibodies, respectively. (C and D) Biotin-streptavidin capture ELISA using

(Continued on next page)
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To determine the detection limit of the biotin-streptavidin capture ELISA, different
concentrations of the recombinant protein BLS-Stx2B and serial dilutions of the EDL933
culture supernatant were analyzed (Fig. 4C and D). The LOD for BLS-Stx2B ranged
between 4 and 8 ng/ml, 4-fold lower than the LOD for the HA–anti-HA capture ELISA.
The maximum dilution of EDL933 culture supernatant for which native Stx2a could be
detected was 1/32 versus 1/16 for the HA–anti-HA capture ELISA. Additionally, in order
to improve the analytical sensitivity of the biotin-streptavidin capture ELISA, the
detection was performed by chemiluminescence instead of spectrophotometry (see
Materials and Methods), but no improvement in the sensitivity of the assay was
observed (Fig. 4E and F).

Taken together, these results demonstrate that the biotin-streptavidin capture ELISA
with spectrophotometric detection is more sensitive than the HA–anti-HA capture
ELISA for the detection of the recombinant as well as the native Stx2a toxins.

Detection of Stx in stool samples. To test the feasibility of the biotin-streptavidin
capture ELISA for the detection of Stx2 in stool, the assay was applied to determine Stx2
in spiked stool samples. For this, a pool of 10 stool samples obtained from patients with
diarrhea not associated with STEC (determined by stool culture, FFStx, and/or stx
detection by PCR) was spiked with different amounts of culture supernatants obtained
from the EDL933, 02/02, or 1091/10 strain and analyzed by the biotin-streptavidin
capture ELISA with spectrophotometric detection (Fig. 5A). The obtained results indi-
cate that the stool matrix does not interfere with Stx2a detection and does not affect
the sensitivity of the capture ELISA; the maximum dilution of STEC culture supernatant
in which the native Stx2a could be detected was 1/32 (Fig. 5A), similar to the one
obtained when diluting the samples in the sample diluent (Fig. 4D). The same spiked
samples were analyzed in parallel with the commercial ELISA kit Ridascreen Verotoxin
(see Materials and Methods). As shown in Fig. 5B, the maximum dilution of EDL933 and
02/02 culture supernatants in which native Stx2a could be detected was 1/8 and 1/2,
respectively, compared to 1/32 and 1/8 for the biotin-streptavidin capture ELISA,
respectively, indicating that the biotin-streptavidin capture ELISA is more sensitive than
the commercial kit for Stx2a detection.

Finally, as a proof of concept, stool samples obtained from patients with diarrhea,
BD, or HUS were analyzed for the presence of Stx2 (Table 2 and Fig. 6). In these samples,
STEC association was confirmed by PCR for stx1 and/or stx2 gene detection from the
confluent growth zone in MacConkey sorbitol agar plates or from the isolated strains.
Based on this analysis, 13 samples were positive for stx2 or stx1 and 9 were negative
(Table 2). By the biotin-streptavidin capture ELISA, high reactivity values were observed
with 9 of 11 stx2-positive samples; as expected, stx1-positive samples (samples 6 and 7)
were negative, and all the stx-negative samples except one (sample 21) showed
negative results (Fig. 6). In parallel, all the samples were also analyzed using the
membrane-based rapid immunoassay Shiga Toxin Quik Chek designed for the detec-
tion of Stx1 and Stx2. The results obtained with the rapid test were similar to those
observed with the VHH-based capture ELISA, except for sample 21, which was negative
by the rapid assay (Table 2). Interestingly, sample 21, obtained from a 2-year-old patient
with clinical diagnosis of HUS, resulted positive for Stx2 by the Vero cell cytotoxicity
assay and the biotin-streptavidin VHH-based capture ELISA developed in this work but
negative for the rest of the laboratory tests, including the PCR techniques (Table 2).
Taken together, these data indicate a high correlation and agreement of the biotin-
streptavidin capture ELISA results with those obtained with stx2 gene detection by PCR
and the commercial kit Shiga Toxin Quik Chek.

FIG 4 Legend (Continued)
the 1vb1-6�His (purified) and biotin-2vb10-6�His VHHs as capture and detection antibodies, respectively, and spectrophotometric detection. (E and F)
Biotin-streptavidin capture ELISA using the 1vb1-6�His (purified) and biotin-2vb10-6�His VHHs as capture and detection antibodies, respectively, and
detection by chemiluminescence. The culture supernatants of the indicated strains were evaluated in several dilutions. The Shiga toxin type and variant
expressed by each strain are indicated in parentheses. The 1091/10 strain does not express any Shiga toxin (control).
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DISCUSSION

Shiga toxins are the distinctive feature and most important virulence factors of STEC
strains irrespective of the E. coli serotype. Therefore, free Stx detection assays and stx
gene detection by PCR are considered the most suitable methods for the early
diagnosis of STEC infections. In addition, timely and accurate diagnosis of STEC infec-
tion is crucial for ensuring proper care of patients as well as avoiding delays in starting
a supportive or, in the case it becomes available, a specific treatment for STEC-HUS. For
these reasons and since VHHs provide many advantages over conventional polyclonal
and monoclonal antibodies or currently used antibody-based fragments, we decided to
exploit VHH single-domain antibodies (nanobodies) derived from camelids to develop
an immunocapture assay for the detection of Stx2.

In the present work, 13 anti-Stx2 VHHs previously obtained from a variable-domain
repertoire library isolated from a llama immunized with the recombinant protein
BLS-Stx2B were selected and evaluated in 130 capture-detection pair combinations for
the detection of the recombinant proteins BLS-Stx2B and GST-Stx2B. Based on this
analysis and the purification yield of the corresponding VHHs, six capture-detection
pairs were selected and further evaluated for their ability to detect the recombinant
proteins and native Stx2 including its variants. In all the VHH capture-detection
combinations, we systematically observed a higher reactivity against BLS-Stx2B than
against GST-Stx2B. This result could be explained by the fact that the llama from which
the library was generated to obtain the VHHs was immunized with the BLS-Stx2B
chimera, and it was previously demonstrated that the BLS scaffold promotes the

FIG 5 Detection of Stx2 in spiked stool samples. A pool of 10 stool samples was spiked with different
amounts of the culture supernatants obtained from the indicated strains. (A) Biotin-streptavidin capture
ELISA with detection by spectrophotometry. (B) Commercial capture ELISA (R-Biopharm). The EDL933
strain expresses Stx1a and Stx2a, 02/02 expresses only Stx2a, and 1091/10 does not express Shiga toxins
(control).
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pentamerization of the toxin, maintaining its Gb3Cer-binding capacity (37). Among the
six VHH capture-detection pairs preliminarily selected, the 1vb1-2vb10 VHH capture-
detection pair displayed the best performance for native Stx2a detection, even showing
some level of reactivity for Stx2f. Therefore, this VHH combination was selected to
develop and optimize a high-performance capture ELISA. To improve the sensitivity of
the assay, the 2vb10-6�His detection VHH was purified, in vitro biotinylated, and used
to develop a biotin-streptavidin capture ELISA. This capture ELISA was evaluated using
spectrophotometric and chemiluminescence detection methods, showing a significant
improvement in the LOD for the recombinant and native Stx2a, but no difference in the
performance of the assay was observed between the two detection methods. Addi-
tionally, to test the performance of the VHH-based capture ELISA for Stx2 detection in
stool samples, stools spiked with culture supernatants of Stx2-producing E. coli strains
and fecal samples obtained from patients with diarrhea, bloody diarrhea, or HUS were
evaluated. Stool-spiked experiments showed that the stool matrix does not interfere
with Stx2 detection since the LOD was similar to the one obtained by diluting native Stx2
in sample buffer. Furthermore, the analytical sensitivity was 4-fold higher than that of a
commercial capture ELISA. Finally, the analysis of diarrheal stool samples obtained from
patients demonstrated a high correlation and agreement of the biotin-streptavidin Stx2
capture ELISA results with those obtained with the stx2 detection method by PCR and the
commercial rapid Shiga Toxin Quik Chek immunoassay.

Although anti-Stx VHHs with therapeutic potential have been developed (33, 35),
until now they have not been applied for the development of new Stx detection assays
for the diagnosis of STEC infections. Here, we have demonstrated that VHHs could be
used as new valuable tailor-made diagnostic tools for the detection of Stx in both STEC
culture supernatants and stool samples. The double VHH-based biotin-streptavidin

TABLE 2 Stool samples obtained from patients with diarrhea, bloody diarrhea, or HUS

Sample
ID

Clinical
diagnosisa Age Serotypeb

Genotypic
characterizationc FFStxd

eae/ehx stx
Vero cell
cytotoxicity assay

Stx Quik
Chek assay

VHH-based
ELISA

1 HUS 3 mo O145:NM �/� stx2a ND Pos (Stx2) Pos
2 BD 6 yr O145:NM �/� stx2a ND Pos (Stx2) Pos
3 BD 13 mo O157:H7 �/� stx2a/2c ND Pos (Stx2) Pos
4 BD 1 yr O145:NM �/� stx2a ND Pos (Stx2) Pos
5 HUS 41 mo O59:H19 �/� stx2a Pos Pos (Stx2) Pos
6 UFS 10 mo O26:H11 �/� stx1a ND Pos (Stx1) Neg
7 UFS 1 mo ONT:HNT �/� stx1a ND Neg Neg
8 HUS 20 mo O157:H7 �/� stx2a/2c ND Pos (Stx2) Pos
9 D 7 yr O121:HNT �/� stx2a ND Pos (Stx2) Pos
10 D 11 yr O145:NM �/� stx2a ND Pos (Stx2) Pos
11 D 10 mo O145:NM �/� stx2a ND Pos (Stx2) Pos
12 HUS 18 mo O145:NM �/� stx2a Neg Neg Neg
13 HUS 2 yr O157:H7 �/� stx2a/2c Neg Neg Neg
14 HUS 11 mo O157:H7 �/� Neg Neg Neg Neg
15 HUS 21 mo ONT:HNT ND Neg Neg Neg Neg
16 HUS 60 mo ONT:HNT ND Neg Neg Neg Neg
17 D 3 yr ONT:HNT ND Neg ND Neg Neg
18 BD 2 yr ONT:HNT ND Neg ND Neg Neg
19 D 2 yr ONT:HNT ND Neg ND Neg Neg
20 BD 11 mo ONT:HNT ND Neg ND Neg Neg
21e HUS 2 yr ONT:HNT ND Neg Pos Neg Pos
22 BD 3 mo ONT:HNT ND Neg ND Neg Neg
aHUS, hemolytic-uremic syndrome; BD, bloody diarrhea; D, diarrhea; UFS, unspecific febrile syndrome.
bSerotype was determined by seroagglutination using specific antisera. ONT, O polysaccharide not typified; HNT, flagellar H antigen not typified; NM, not motile.
ceae, ehxA, and stx gene(s) detection by PCR. ND, not determined.
dFree fecal Shiga toxin (FFStx) detection in stool samples. Pos, positive; Neg, negative; ND, not determined; VHH-based ELISA, biotin-streptavidin VHH-based capture
ELISA with spectrophotometric detection.

eBacterial isolation, negative; immunomagnetic separation for O157, negative; multiple PCR for rfbO157/stx1/stx2, negative; PCR for diarrheagenic Escherichia coli
including enteropathogenic E. coli (eae), enteroaggregative E. coli (aggR), enteroinvasive E. coli (ipaH), and enterotoxigenic E. coli (heat-labile enterotoxin/heat-stable
enterotoxin), negative; Chemlis E. coli O157, O145, and O121 (Chemtest Argentina S.A., detection of specific IgM and IgG antibodies in serum sample), negative.
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capture ELISA showed an excellent performance for the detection of Stx2a subtype, the
variant of greater clinical and epidemiological relevance, and to a lesser extent Stx2f. In
addition, VHHs provide many advantages over conventional polyclonal and monoclo-
nal antibodies and currently used antibody-based fragments. These advantages are
given by the intrinsic properties of VHHs, including their solubility and structural
stability even under denaturing or high-temperature conditions (44). Furthermore, they
can be efficiently engineered, cloned, and expressed with high yields in economical
expression systems, such as bacteria and yeast, and with high batch-to-batch repro-
ducibility, which allows their production on a large scale and in a standardized manner
in a short period (45). In summary, these characteristics may facilitate the development,
production, and standardization of these immunoreagents, resulting in less expensive
and better diagnostics for STEC-HUS that could be easily transferred to clinical practice.
Additionally, we are applying the VHHs selected in this work for the development of a
rapid (10-min) immunochromatographic assay that would improve access to diagnos-
tics, especially for health care units with minimal infrastructure and untrained staff.
Furthermore, the potential of the VHH technology should allow us to easily broaden the
detection spectrum to Stx1 and its variants as well as the other subtypes of Stx2. All
these aspects will further facilitate the translation of our findings to clinical practice.

The domain structure of VHHs consists in four conserved framework regions (FR1 to
FR4) and three hypervariable complementarity-determining regions (CDR1 to CDR3).
FRs maintain the tertiary structure of the paratope, while the CDRs form the hypervari-
able loops that directly interact with the antigen epitope (46). The typically long and
flexible CDR3 of VHHs makes them particularly capable of binding concave and hidden
epitopes (cryptic epitopes, enzyme active sites, etc.) that are not accessible to conven-
tional antibodies (44). However, the six VHHs selected in this work which displayed the
highest performance (2vb21, 2vb10, 1vb1, 2vb1, 2vb11, and 2vb8) belong to the same
VHH family (family 1) and have a CDR3 significantly shorter (7 amino acid residues) than
the CDR3 length (12, 17, and 20 amino acid residues) of the VHHs of the other families
(see Fig. S2 in the supplemental material). Interestingly, these six VHHs belong to the
same family (family 1) of a previously developed VHH (2vb27 VHH) with therapeutic
potential, which showed an excellent in vitro and in vivo Stx2-neutralizing capacity (33).

FIG 6 Analysis of stool samples obtained from patients with diarrhea, bloody diarrhea, or HUS by the
biotin-streptavidin capture ELISA with spectrophotometric detection. The analysis was performed after
enrichment of the samples in Gram-negative broth (Hajna) (see Materials and Methods). The recombi-
nant proteins BLS-Stx2B and GST-Stx2B, the culture supernatants obtained from STEC strains that
produce Stx1a or Stx1c, and the sample diluent were included as controls. A sample was considered
positive when the A450 value was 3 times higher than the value obtained for the sample diluent (A450 �
0.18).
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Further work is needed to characterize and understand how these VHHs with a short
CDR3 are able to efficiently interact with the B subunit of Stx2.

In summary, we have developed and optimized a double (capture-detection) VHH-
based biotin-streptavidin capture ELISA with spectrophotometric detection for Stx2
detection. This assay showed an analytical sensitivity higher than a commercial ELISA
and an excellent clinical sensitivity comparable to the one obtained with the PCR-based
stx2 gene detection method and a commercial rapid immunoassay. This excellent
performance coupled with the intrinsic properties of VHHs (high target affinity and
specificity, stability, and ease of expression at high yields in recombinant bacteria)
makes it an attractive tool for Stx detection and could be of great value for STEC-HUS
diagnosis.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
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