Title: Evaluation of Fecal \textit{C. difficile} Load and Limit of Detection during a Prospective Comparison of Two Molecular Tests, the illumigene \textit{C. difficile} and Xpert \textit{C. difficile}/Epi

Running Title: Limit of Detection and \textit{C. difficile} Test Sensitivity

†Clare E. Gyorke,1 †Susan Wang,1 Jhansi L. Leslie,1 Stuart H. Cohen,2 Jay V. Solnick,2,3 Christopher R. Polage1,2

Departments of Pathology and Laboratory Medicine1, Internal Medicine, Division of Infectious Diseases2, and Medical Microbiology and Immunology3, University of California, Davis, School of Medicine, Davis, CA.

†The contributions of these two authors are considered equal.

Keywords: \textit{Clostridium difficile}, real-time PCR, Lamp, limit of detection, diarrhea

Corresponding author: Christopher R. Polage, phone: (916) 734-3655; fax: (916) 734-3987; email: christopher.polage@ucdmc.ucdavis.edu

Word Counts:

Abstract: 54

Text: 1676
ABSTRACT

In a large prospective comparison, the illumigene detected *C. difficile* in 98% of toxin-positive and 58% of toxin-negative samples confirmed positive by other methods. The Xpert was uniformly sensitive. Most samples with discrepant results had *C. difficile* concentrations below the illumigene limit of detection. The significance of low level *C. difficile* detection needs investigation.
The incidence and severity of *Clostridium difficile* infection (CDI) have increased dramatically in North America and Europe over the last decade (11). In the United States, rates of CDI are now at an all-time high (12). With this change in incidence, the performance of *C. difficile* testing has been reexamined and there has been a movement towards tests that detect *C. difficile* antigens or DNA directly versus tests that detect *C. difficile* toxins (7). As a group, *C. difficile* detection tests (e.g., PCR, loop-mediated amplification (LAMP), glutamate dehydrogenase immunoassay) are more sensitive than toxin tests but the reported sensitivities still vary for unclear reasons. For example, the published sensitivity of the illumigene *C. difficile* assay ranges from 81-98% (3-6, 8, 13, 14, 17) leaving laboratories with uncertainty about which test to use and what performance to expect at their own institution.

To address this issue, we evaluated the fecal *C. difficile* DNA load of positive samples as part of a large, prospective comparison of two FDA-approved nucleic acid amplification tests (NAATs) for *C. difficile*, the illumigene *C. difficile* and Xpert *C. difficile*/Epi, with toxigenic culture. When the clinical results and fecal *C. difficile* load comparisons suggested a genuine difference in the sensitivity of these two NAATs, we evaluated the inoculum size and analytical limit of detection (LOD) of both assays to further investigate the causes and significance of discrepant results.

Study population and test methods. Consecutive diarrheal stool samples submitted for *C. difficile* testing from adult inpatients ≥72 hours after admission between January and October 2011 were included in the study; non-conforming stool samples were rejected. Each sample was tested for toxigenic *C. difficile* by three tests: 1) illumigene *C. difficile* LAMP assay (Meridian Bioscience); 2) Xpert *C. difficile*/Epi real-time PCR assay (Cepheid); 3) toxigenic culture. In addition, the fecal toxin status of each sample was determined by a toxin immunoassay (Premier...
C. difficile Toxins A&B, Meridian Bioscience) performed on all samples and a cytotoxicity assay (Wampole C. difficile Tox-B, TechLab; MHRF cells, Diagnostic Hybrids) performed on immunoassay negative, C. difficile positive samples from frozen aliquots when available (n=55/61; 90.2%) (10). All tests were performed daily on fresh stool (except cytotoxicity) following the manufacturer’s instructions. For toxigenic culture, 0.5 mL stool was mixed 1:1 with 95% EtOH for 10 minutes and a swab was used to inoculate a pre-reduced agar media (CCFA-ST, Remel). Cultures were incubated anaerobically at 37° C for 3 days and suspicious colonies were identified by colony and gram stain morphology, odor, production of L-proline aminopeptidase and fluorescence under long-range UV light. In-vitro toxin production of isolates was confirmed by cytotoxicity testing of isolates grown in chopped meat broth (Remel) at 48 hours (15). Samples that were negative with the initial EtOH-shock culture but positive by either of the NAATs were cultured in enrichment broth (CCMB-TAL, Anaerobe Systems) from a frozen aliquot (n=10) (16). The ability of the illumigene assay to detect toxigenic C. difficile isolates recovered from culture of illumigene negative samples was tested directly using a 100 uL volume of a 4 McFarland suspension from fresh subculture.

Fecal load, inoculum size and LOD methods. The fecal C. difficile DNA load of positive samples was calculated from the Xpert tcdB gene PCR cycle number at the end point of detection using standard curves performed with each lot of test cartridges as previously described (9, 10). The typical inoculum size of each test was evaluated by weighing five replicate samplings of one soft, one loose and one watery stool sample using the sample collection brush (illumigene) or swab (Copan) following the manufacturer’s instructions. For the Xpert assay, our practice was to dip the swab fully and wipe any excess on the container wall. The LOD of each NAAT was determined by replicate testing of a 100 uL volume from serial dilutions (ten-
fold and two-fold) of a 24-hour culture of *C. difficile* ATCC 43255 (VPI 10463) with the concentrations confirmed by the average of triplicate colony counts on Brucella agar.

Data and statistical methods. The first positive sample from each patient or first sample from negative patients was included; duplicate samples were excluded. Samples with ≥2 positive results (e.g., toxigenic culture, Xpert, illumigene, toxin by immunoassay or cytotoxicity) were considered to be confirmed as positive for toxigenic *C. difficile*. Sensitivity and specificity values and 95% confidence intervals were calculated against the 2-test reference standard. Chi-square and Fisher’s exact tests were used for categorical data.

Test results from clinical samples. Of the 693 samples tested, 568 samples and patients were included in the analysis. 100 (17.6%) samples had toxigenic *C. difficile* detected by ≥2 methods including 64 (64%) fecal toxin-positive samples and 36 (36%) toxin-negative samples. The number of positives detected by each method (e.g., toxigenic culture, illumigene *C. difficile*, Xpert *C. difficile*/Epi) and the calculated sensitivities and specificities are shown in Table 1. Overall, both NAATs were highly sensitive (>98%) for *C. difficile* in fecal toxin-positive samples but the illumigene detected *C. difficile* in only 21/36 (58.3%) fecal toxin-negative samples while the Xpert detected *C. difficile* in all 36 (100%) samples in this group (Table 1). The Xpert had 6 additional positive results that could not be confirmed by any other test. These were considered false positives.

Fecal *C. difficile* load, inoculum size and LOD evaluations. Comparison of the fecal DNA concentrations of samples with *C. difficile* detected by the Xpert but missed by the illumigene showed that virtually all (n=15/16, 93.8%) were stools with no fecal toxins detected and a relatively low concentration of *C. difficile* DNA (Figure 1). For direct comparison, the median concentration of *C. difficile* DNA for the 84 samples detected by illumigene was 6.64
[95% CI 6.24, 6.70] log_{10} \textit{C. difficile} tcdB DNA copies/mL; the median concentration of the 16 illumigene negative, Xpert positive samples was 4.11 [95% CI 3.82, 4.60] log_{10} \textit{C. difficile} tcdB DNA copies/mL. To better understand why the illumigene missed the \textit{C. difficile} DNA in these low concentration samples, we examined the inoculum size and LOD of both tests. The mean inoculum weights differed slightly between the two tests (ratio of sample weights, Xpert swab/illumigene brush: 0.7-1.6) but not to a degree that would explain the sensitivity difference among toxin-negative samples. In contrast, the analytical LOD of the two NAATs differed by 1.2 log_{10} DNA copies for the VPI 10463 strain we tested (Figure 1). The illumigene detected 9/9 replicates at 32,750 cfu/mL (4.52 log_{10}) and 5/10 replicates at 16,375 cfu/mL (4.21 log_{10}) yielding an LOD of 4.52 log_{10} \textit{C. difficile} tcdB DNA copies/mL. The Xpert detected 10/10 replicates at 2,047 cfu/mL (3.31 log_{10}) and 0/5 replicates at 1,024 cfu/mL (3.01 log_{10}) yielding an LOD of 3.31 log_{10} \textit{C. difficile} tcdB DNA copies/mL. Using these LODs, 9/16 (56.3%) illumigene negative, Xpert positive samples had \textit{C. difficile} DNA concentrations below the illumigene LOD; 7/16 (43.8%) had concentrations just above the LOD (range: 0.19 – 1.11 log_{10} above LOD). To confirm that the illumigene assay could detect the \textit{C. difficile} strains from samples with discrepant results, higher concentrations were tested directly from culture. Of the 15 available isolates, all were amplified and detected.

Conclusions. Overall, we found a 16% sensitivity difference between the illumigene \textit{C. difficile} LAMP assay and the Xpert \textit{C. difficile}/Epi real-time PCR test in a large-scale, prospective comparison with toxigenic culture. When the fecal toxin status of samples was considered, the illumigene and Xpert tests performed similarly and were both highly sensitive for toxin-positive samples but the illumigene was much less sensitive with toxin-negative samples (illumigene = 58% vs. Xpert = 100%, P<0.001). We suspected that this was due to the low
concentration of *C. difficile* target DNA in these samples. To validate this hypothesis and our overall results, we compared the *C. difficile* concentrations of positive samples detected by both tests and positive samples missed by the illumigene and determined the LOD of both tests. These investigations confirmed that virtually all of the clinical samples with discrepant results had low *C. difficile* DNA concentrations that were near or below the illumigene LOD but above the Xpert LOD as expected. The LOD thresholds we measured showed the illumigene LAMP assay to be less sensitive analytically than the Xpert real-time PCR test by about 1.2 log\textsubscript{10} DNA copies/mL and were in agreement with the LOD data provided in the manufacturer’s package insert for each test (1, 2). Conversely, when *C. difficile* isolates from samples originally called negative by the illumigene were retested at higher concentration from culture, all were amplified and detected. Together, these findings demonstrate a clinical sensitivity difference between the illumigene *C. difficile* assay and the Xpert *C. difficile*/Epi test at low *C. difficile* concentrations that appears to be due to a difference in the analytical sensitivity of these two NAATs and not due to non-amplification due to DNA sequence polymorphisms. Careful review of the instructions for these two tests would seem to suggest that the difference may be due to the additional sample dilution steps included in the pre-analytical processing with the illumigene assay (1). Two other studies have reported similar sensitivities to ours for the illumigene and Xpert assays but the underlying causes were not investigated (14, 17). Others have reported higher sensitivities for the illumigene assay in the range of 92-98% sensitivity but it is possible that some of these were biased by use of a less sensitive reference method or inclusion of large numbers of toxin-positive samples in the study (3-6, 8, 13).

We believe these results show conclusively that the illumigene *C. difficile* LAMP assay and the Xpert *C. difficile*/Epi test differ in their analytical and clinical sensitivity, in particular in...
their ability to detect low-concentration, toxin-negative, *C. difficile*-positive samples.

However, since the clinical significance of fecal samples with low bacterial load of *C. difficile* is unknown, these results suggest more questions need to be answered. If these patients are simply carriers without clinically significant CDI, then the illumigene assay may be more accurate. Alternatively, if there is no safe level of *C. difficile* for either CDI or transmission, then the more sensitive Xpert assay may be preferable.

ACKNOWLEDGMENTS

This work was supported by grants from the National Center for Advancing Translational Sciences (8KL2TR000134-07) (C.R.P.). Materials and reagents were partially provided by Cepheid, Meridian and TechLab (C.R.P.). All other authors: no conflicts. We would also like to thank the staffs of the UC Davis Clinical Microbiology Laboratory for their help with this study and ongoing support.
REFERENCES

TABLE 1. Number of samples called positive by each test and overall sensitivity and specificity

<table>
<thead>
<tr>
<th>Reference Classification<sup>a</sup></th>
<th>N</th>
<th>Toxigenic Culture (%)<sup>b</sup></th>
<th>Illumigene C. difficile (%)<sup>b</sup></th>
<th>Xpert C. difficile/Epi (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxin+/C. difficile+</td>
<td>64</td>
<td>62 (96.9%)</td>
<td>63 (98.4%)</td>
<td>64 (100.0%)</td>
</tr>
<tr>
<td>Toxin-/C. difficile+</td>
<td>36</td>
<td>32 (88.9%)</td>
<td>21 (58.3%)</td>
<td>36 (100.0%)</td>
</tr>
<tr>
<td>C. difficile-</td>
<td>468</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>6 (1.3%)</td>
</tr>
</tbody>
</table>

Sensitivity^c
100 94% [89.4%, 98.7%] 84% [76.8%, 91.2%] 100% [95.4%, 100%]

Specificity^c
468 100% [99.0%, 100%] 100% [99.0%, 100%] 98.7% [97.7%, 99.7%]

^a ≥2 tests positive
^bPercent represents the number of samples positive by test/samples positive by reference classification*100.
^cPercent of ‘N’ and 95% confidence interval for each test.
FIGURE 1. Fecal *C. difficile* concentrations of positive stool samples overall and detected by each test. Closed circles (●) are consensus positive samples with toxigenic *C. difficile* detected.
by ≥2 tests. Upward pointing triangles (▲) are all samples reported as positive by the Xpert C. difficile/Epi test. Downward pointing triangles (▼) are samples reported as positive by the illumigene C. difficile test. Solid lines represent a 95% sensitivity cutoff for toxin detection (5.10 log₁₀ C. difficile tcdB DNA copies/mL) from references (9, 10). Above this line, 61/73 (83.6%) of samples were toxin-positive. Below this line, 24/27 (88.9%) samples were toxin-negative. Dashed lines indicate the Xpert and illumigene C. difficile DNA LOD values discussed in the text (Xpert = 3.31 log₁₀ C. difficile tcdB DNA copies/mL; illumigene = 4.52 log₁₀ C. difficile tcdB DNA copies/mL).