TABLE 1.

Distribution of virulence-associated genes in different S. epidermidis populations

GeneaPrevalence (no. [%] of strains)bPrimersReference or conditions
Invasive strains (n = 16)Commensal strains, BMT patients (n = 25)Commensal strains, healthy subjects (n = 15)
icaA (U43336)c15 (93.8)20 (80)2 (13)Forward, 5′-TCG ATG CGA TTT GTT CAA ACA T-3′; reverse, 5′-CTG TTT CAT GGA AAC TCC-3′15
aap (AJ249487)d15 (93.8)23 (92)13 (86.7)Forward, 5′-AAA CGG TGG TAT CTT ACG TGA A-3′; reverse, 5′-CAA TGT TGC ACC ATC TAA ATC AGC T-3′5 min, 94°C; 30 cycles of 30 s, 94°C; 30 s, 60°C; 50 s, 72°C; final extension, 4 min, 72°C
bhp (AY028618)e3 (18.8)4 (16)4 (26.7)Forward, 5′-ATG GTA TTA GCA AGC TCT CAG CTG G-3′; reverse, 5′-AGG GTT TCC ATC TGG ATC CG-3′5 min, 94°C; 30 cycles of 30 s, 94°C; 30 s, 61°C; 90 s, 72°C; final extension, 4 min, 72°C
fbe (Y17116)f16 (100)25 (100)15 (100)Forward, 5′-CTA CAA GTT CAG GTC AAG GAC AAG G-3′; reverse, 5′-GCG TCG GCG TAT ATC CTT CAG-3′5 min, 94°C; 30 cycles of 30 s, 94°C; 30 s, 60°C; 50 s, 72°C; final extension, 4 min, 72°C
embp (AY101364)g14 (87.5)19 (76)15 (100)Forward, 5′-AGC GGT ACA AAT GTC AAT-3′; reverse, 5′-AGA AGT GCT CTAG CAT CAT CC-3′32
atlE (U71377)f16 (100)25 (100)15 (100)Forward, 5′-CAA CTG CTC AAC CGA GAA CA-3′; reverse, 5′-TTT GTA GAT GTT GTG CCC CA-3′5 min, 94°C; 30 cycles of 30 s, 94°C; 30 s, 55°C; 30 s, 72°C; final extension, 4 min, 72°C
mecA (X52592)h14 (87.5)24 (96)1 (6.7)Forward, 5′-GAA ATG ACT GAA CGT CCG AT-3′; reverse, 5′-GCG ATC AAT GTT ACC GTA GT-3′5 min, 94°C; 30 cycles of 30 s, 94°C; 30 s, 55°C; 30 s, 72°C; final extension, 4 min, 72°C
IS256 (AF051917)i15 (93.8)19 (76)0Forward, 5′-TGA AAA GCG AAG AGA TTC AAA GC-3′; reverse, 5′-ATG TAG GTC CAT AAG AAC GGC-3′35
IS257 (U40381)f16 (100)25 (100)15 (100)Forward, 5′-ACG TTC ATC ATT CAA CGG TC-3′; reverse, 5′-AGT GTT CGC TTA ACT TGC TAG-3′5 min, 94°C; 30 cycles of 30 s, 94°C; 30 s, 55°C; 30 s; 72°C; final extension, 4 min, 72°C
  • a GenBank accession numbers are given in parentheses.

  • b icaADBC, mecA, and IS256 were significantly more prevalent in invasive strains and commensals from BMT patients than in commensals from healthy individuals (Yates' corrected chi-square test), whereas all other differences were below statistical significance.

  • c P = 0.44 for invasive strains versus commensal strains from BMT patients; P = 0.0002 for commensal strains from BMT patients versus commensal strains from healthy subjects; P < 0.0001 for comparison of all three groups of strains.

  • d P = 0.68 for invasive strains versus commensal strains from BMT patients; P = 1.0 for commensal strains from BMT patients versus commensal strains from healthy subjects; P = 0.95 for comparison of all three groups of strains.

  • e P = 0.84 for invasive strains versus commensal strains from BMT patients; P = 0.68 for commensal strains from BMT patients versus commensal strains from healthy subjects; P = 0.92 for comparison of all three groups of strains.

  • f Statistical analysis is not applicable.

  • g P = 0.61 for invasive strains versus commensal strains from BMT patients; P = 0.1 for commensal strains from BMT patients versus commensal strains from healthy subjects; P = 0.49 for comparison of all three groups of strains.

  • h P = 0.68 for invasive strains versus commensal strains from BMT patients; P < 0.0001 for commensal strains from BMT patients versus commensal strains from healthy subjects; P < 0.0001 for comparison of all three groups of strains.

  • i P = 0.29 for invasive strains versus commensal strains from BMT patients; P < 0.0001 for commensal strains from BMT patients versus commensal strains from healthy subjects; P < 0.0001 for comparison of all three groups of strains.